2008年8月7日星期四

网络学堂之七:构建对等网

  在前两篇中已对网线的制作和网卡配制相关的基础知识有了一个全面的了解,本篇就要利用毅面所介绍的知识进行最简单的网络组建。

  通过前面的学习,我们知道,计算机网络按其工作模式分主要有:对等模式和客户机/服务器(C/S)/模式,在家庭网络中通常采用对等腰网模式,而在企业网络中则通常采用C/S模式。因为对等腰三角形模式注重的是网络的共享功能,而企业网络更注重的是文件资源管理和系统资源安全等方面。对等网除了应用方面的特点外,更重要是的它的组建方式简单,投资成本低,非常容易组建,非常适合于家庭、小型企业选择使用。学习网络组建当然是从最基本的着手,而对等网是最简单的一种网络模式,它可以只需几条网线,加上几块网卡就可以,而这些知识我们在前面已作详细介绍,完全具备基本的对等组建能力。

  一、对等网简介

  “对等网”也称“工作组网”,那是因为它不像企业专业网络中那样是通过域来控制的,在对等网中没有“域”,只有“工作组”,这一点要首先清楚。正因如此,我们在后面的具体网络配置中,就没有域的配置,而需配置工作组。很显然,“工作组”的概念远没有“域”那么广,所以对等网所能随的用户数也是非常有限的。在对等网络中,计算机的数量通常不会超过20台,所以对等网络相对比较简单。在对等网络中,对等网上各台计算机的有相同的功能,无主从之分,网上任意节点计算机既可以作为网络服务器,为其它计算机提供资源;也可以作为工作站,以分享其它服务器的资源;任一台计算机均可同时兼作服务器和工作站,也可只作其中之一。同时,对等网除了共享文件之外,还可以共享打印机,对等网上的打印机可被网络上的任一节点使用,如同使用本地打印机一样方便。因为对等网不需要专门的服务器来做网络支持,也不需要其他组件来提高网络的性能,因而对等网络的价格相对要便宜很多。

  对等网主要有如下特点:

  (1)网络用户较少,一般在20台计算机以内,适合人员少,应用网络较多的中小企业; 
  (2)网络用户都处于同一区域中;
  (3)对于网络来说,网络安全不是最重要的问题。

  它的主要优点有:网络成本低、网络配置和维护简单。

  它的缺点也相当明显的,主要有:网络性能较低、数据保密性差、文件管理分散、计算机资源占用大。
 二、对等网结构

  虽然对等网结构比较简单,但根据具体的应用环境和需求,对等网也因其规模和传输介质类型的不同,其实现的方式也有多种,下面分别介绍:

  1、两台机的对等网

  这种对等网的组建方式比较多,在传输介质方面既可以采用双绞线,也可以使用同轴电缆,还可采用串、并行电缆。所需网络设备只需相应的网线或电缆和网卡,如果采用串、并行电缆还可省去网卡的投资,直接用串、并行电缆连接两台机即可,显然这是一种最廉价的对等网组建方式。这种方式中的“串/并行电缆”俗称“零调制解调器”,所以这种方式也称为“远程通信”领域。但这种采用串、并行电缆连接的网络的传输速率非常低,并且串、并行电缆制作比较麻烦,在网卡如此便宜的今天这种对等网连接方式比较少用。

  2、三台机的对等网

  如果网络所连接的计算机不是2台,而是3台,则此时就不能采用串、并行电缆连接了,而必须采用双绞线或同轴电缆作为传输介质,而且网卡是不能少的。如果是采用双绞线作为传输介质,根据网络结构的不同又可有两种方式:(1)一种是采用双网卡网桥方式,就是在其中一台计算机上安装两块网卡,另外两对路机各安装一块网卡,然后用双绞线连接起来,再进行有关的系统配置即可。(2)添加一个集线器作为集结线设备,组建一个星形对等网,三台机都直接与集线器相连。从这种方式的特点来看,虽然可以省下一块网卡,但需要购买一个集线器,网络成本会较前一种高些,但性能要好许多。

  如果采用同轴电缆作为传输介质,则不需要购买集线器了,只需把三台机用同轴电缆网线直接串连即可。虽然也只需3块网卡,但因同轴电缆较双绞线贵些,所以总的投资与用双绞线差不多。

  3、多于3台机的对等网

  对于多于3台机的对等网组建方式只能有两种:(1)采用集线设备(集线器或交换机)组成星形网络;(2)用同轴电缆直接串连。虽然这类对等网也可采用双网卡网桥方式,就是在除了首、尾两台计算机外都采用双网卡配置,但这种方式因要购差不多两倍的网卡,成本较高;且双网卡配置对计算机硬件资源要求较高,所以不可能有人会用这种方式来实现多台计算机的对等网到连。

  以上介绍是对等网的硬件配置,在软件系统方面,对等网更是非灵活,几乎所有操作系统都可以配置对等网,包括网络专用的操作系统,如Windows NT Server/2000 Server/2003 Server,Windows 9x/ME/2000 Pro/XP等也都可以,早期的DOS系统也可以。

  因为对等网类型繁多, 所用系统组成也是多种多样,不可能对所有类型的对等网组建方法都一一介绍,况且实际应用中有些对等网类型并不常用,如直接电缆连接的对等网、双网卡对等网等,在操作系统方面如DOS、Windows 95、Windows NT/2000/2003 Server等也通常不应用于对等网中,所以在本篇仅介绍目前在家庭中常用的Windows 98及Windows 2000 Pro系统中双绞线两台机的对等网配置方法。多机及其它操作系统下对等网的配置方法类似,参照即可。
 三、Windows 98与Windows 2000 Pro双机双绞线对等网组建

  在整个组网过程中,总的来说可以分为如下几个大步:

  (1)。 网线制作;
  (2)。 网卡的硬件安装;
  (3)。 网卡的连接
  (4)。 网卡驱动程序的安装与系统配置

  在以上四步中,最重要、最复杂的是网卡驱动程序的安装与系统配置。下面具体介绍以上各步。

  1.网线的制作及连接

  第1步,按1-3,2-6交叉法制作一条五类(或超五类)双绞线(因具体的网线制作方法在前面已作详细介绍,在此不再赘述);

  第2步,按前面所作的介绍准备两块PCI总线接口、10/100Mbps自适应的RJ-45以太网卡(可以是同一型号网卡,也可以是不同型号的网卡);

  第3步,把两网卡分别插入到计算机空余PCI插槽中,然后用螺钉固定在机箱上。

  【注意】在计算机中插入网卡的方法与其它PCI板卡的插入方法完全一样,PCI插槽也没有规定,只是有PCI空闲即可利用。

  第4步,把网线的两端的水晶头分别插入两台计算机已安装的网卡的RJ-45接口中,这样就完成了两台计算机的网络连接。

  通过以上简单的4步,就把网卡的物理安装和网络连接完成了,下面着重介绍网卡的驱动程序安装与系统配置。
 2、网卡驱动程序的安装

  网卡虽然安装了,但如果不进行驱动程序的安装与系统的配置也是不能起到网络连接的作用的。不过随着微软Windows系统对硬件支持范围的扩大,许多网卡的驱动程序都已内置,所以通常是不需要另外提供网卡的厂家驱动程序,当系统进入后即可检测到硬件,然后安装相应Windows系统中自带的驱动程序,真正实现“即插即用”。但为了实现网卡的真正性能,如果有网卡厂家的驱动程序,建议还是安装厂家提供的驱动程序;如果没有,当然可以使用Windows系统自带的了,网卡也可正常工作;如果Windows系统没有提供此型号网卡的驱动程序,则一定要安装厂家的驱动程序或者选择一个兼容该型号网卡的其它型号驱动程序。

  为了使大家掌握网卡驱动程序的安装方法,现介绍最难安装的Windows 98系统中网卡驱动程序的安装方法,其它系统的驱动程序安装方法参照即可。具体步骤如下(因实际情况下,有多种安装网卡驱动程序的方法,在此仅以最基本的安装方法进行介绍):

  第1步,在控制面板中双击“添加新硬件”选项,出现如图1所示的添加新硬件向导对话框。


图1

  

  第2步,单击“下一步”按钮,出现如图2所示对话框。这个对话框提示用户系统将对新添加的硬件进行搜索。


图2

 第5步,先选择第一个单选项,单击“下一步”按钮出现如图5所示对话框。在这个对话框中显示了搜索驱动程序的多种定位方法,根据实际选择一项或多项复选项。

 


图5

  如果选择的不是如图4所示对话框中的第一个单选项,而是下面那个,则出现如图6所示的对话框。在这个对话框中列出了所有兼容此网卡的类型,选择一个即可。如果还不能确定,则可单击对话框中的“从磁盘安装”按钮,从厂家提供的磁盘中安装网卡的驱动程序。


图6

  选择好了驱动程序的位置后,单击如图5所示的“下一步”按钮或者是如图6所示“确定”按钮后即可自动完成驱动的安装了。安装完后系统提示要求重新启动系统,重启后生效。

  【说明】Windows 98第二版支持目前市场上绝大多数网卡,用户最好选择支持即插即用(Plug&Play)的网卡产品。这样,当Windows 98重新启动时,会自动检测到网卡并为其安装相应的软件驱动程序,也可自动分配该网卡的I/O地址、IRQ和DMA,并保证各设备之间不会发生冲突,所以不再需要人工配置这些。


  3、网卡的配置

  网卡的配置是整个对等网组建成功与否的关键,在网卡的配置中需要做以下几个方面的配置:

  (1)安装网络客户
  (2)安装网络协议
  (3)配置工作组
  (4)配置客户机网卡的IP地址

  通常在安装网卡后,基本的网络组件,如网络客户、TCP/IP协议都已安装,我们只需进行一些必要的配置即可。下面分以Step-By-Step的方式介绍在网卡安装后系统未自动完成的部分。

  第1步,在控制面板中双击“网络”选项,出现如图7所示的网络属性对话框(如果在桌面上已有“网上邻居”项,也可直接在其上单击鼠标右键,然后选择“属性”选项,同样可打开这样一个网络属性对话框)。


图7


图8




  第2步,因为要Windows 98对等网中实现诸如打印共享之类的低级网络任务,仍需使用较低级的NetBEUI协议,所以除了系统自动安装的TCP/IP协议外,我们还需添加这个协议(在Windows ME/2000/XP等系统中不需要)。安装的方法很简单,只需在如图7所示对话框中单击“添加”按钮,即可打开如图8所示对话框。

 

  第3步,选择如图8所示对话框中的“协议”项,然后单击“添加”按钮后即可打开如图9所示对话框,在这个对话框中的左边栏选择“Microsoft”选项,然后在右边列表中双击“NetBEUI”选项即可。


图9

  第4步,添加了NetBEUI协议后不要急于重新启动系统,为了完成对等资源的共享安装,要把文件及打印的共享服务程序加进去。方法与添加NetBEUI协议类似,不同的中是在如图8所示对话框中选择的不是“协议”,而是“服务”,然后在出现的如图10所示对话框中双击“Microsoft网络上的文件与打印机共享”选项即可。添加了这个服务项后,对等网中的用户才可以通过网络进行文件和打印机共享。


图10




  第5步,安装了协议和服务后,现在就要来配置客户机网卡的IP地址了。在如图7所示对话框中选择对应网卡的TCP/IP项(注意不是选择物理的网卡项),如图11所示。然后单击“属性”按钮,打开网卡的TCP/IP属性配置对话框,如图12所示。

 


图11

  


图12

  第6步,因为在对等网中没有专门的DHCP服务器来为各客户机自动IP地址,所以需要在如图12所示对话框中选择“指定IP地址”单选项,然后在下面的“IP地址”和“子网掩码”栏中分别输入一个IP地址和子网掩码。

  【说明】在局域网通常采用局域网专用的IP地址段来指定IP地址,这个专用IP地址段为“192.168.0.0 ̄192.168.255.255”。当然也可以采用其它C类IP地址。子网掩耳盗铃码要注意与相应的IP地址类型对应,如C类IP地址的子网掩码,在没有子网时为“255.255.255.0”。

  在TCP/IP协议属性基本的只需配置IP地址项,如果还要实现网络连接共享,如共享上网,则还需要在客户端配置“网关”项,网关直接指向提供共享上网的主机局域网网卡IP地址。因不属于本篇重点,在此不再详叙。

  第7步,单击如图7所示对话框中的“文件及打印共享”按钮,打开如图13所示对话框,全选两个复选项,这是为了其它客户机能够共享本机资源而设的。当然这也要根据实际情况而定,如果此机上没有连接打印机,则不需选择“允许其他计算机使用我的打印机”复选项。


图13




  第8步,在如图7所示对话框“主网络登陆”下拉列表中选择“Windows登陆”选项,这样在每次启动系统时就不会出现身份验证对话框,要求用户输入密码。实际上在Windows 98系统中,这些都是没有任何意义的,因为只需按“ESC”键或单击对话框中的“取消”按钮都可进入系统。

 

  第9步,在如图7所示的对话框中单击“标识”标签项,对话框如图14所示。在这个对话框中要为计算机配置网络中唯一的计算机名,并配置网络的工作组名。配置好后单击“确定”按钮生效。


图14

  好了,所有选项设置好,单击“确定”按钮,系统即进行自动更新,完后即要求重新启动系统,重启后即生效。

  4。 共享文件夹的配置

  不像企业客户机/服务器模式下的网络一样,文件资源是采用访问权限来限制,而在对等网中只是通过共享文件夹的设定来实现资源的共享。

  共享文件夹的设定方法非常简单,具体如下:

  第1步,在需共享的文件夹上单击鼠标右键,在出现快捷菜单中选择“共享”选项,如图15所示。选择“共享”选项后出现如图16所示的共享文件夹设定对话框。


图15


图16




 第2步,在如图16所示对话框中,选择“共享为”单选项,然后在“共享名”中输入该共享文件夹的共享名称。如果还想设定访问权限,可以在“访问类型”域中选择相应单选项:

 

  ·只读:如果选择此单选项,则用户可以共享此共享文件夹,但不能修改共享文件夹中的内容,更不能删除了,系统默认选择此单选项,为了安全起见,也建议采用此共享类型;

  ·完全:如果选择此单选项,则用户可以完全控制共享文件夹中的文件,包括任何修改和删除;

  ·根据密码访问:如果选择此单选项,则可在“只读密码”文本框中输入只读密码,这样其它用户要共享此共享文件夹中的文件,就必须先输入这个只读密码,而且用户只能以只读的方式打开其中的文件,而不能修改和删除。

  通过以上几步,设置好了共享后,相应的文件夹中就会有一个蓝色手形标志托住,如图17所示。


图17

 不过要注意的是,在Windows MT/2000/2003系统中,有一种共享文件夹是不能在客户机中看到的,那就是系统本身用于管理的共享文件夹,这类共享文件夹的共享名后面都带有一个“¥”,如图18所示。这类共享文件夹通常是逻辑磁盘,这主要是出于安全和管理方面考虑的,因为整个磁盘如果暴露于一般用户则自即日起很石阶的,但有时又需要对整个磁盘进行远程管理,这时就需要共享了。用户虽然在网上邻居中是看不到这类共享文件夹,但实际上是存在的,只需要DOS提示符下直接输入其相应共享文件夹名(不包括“¥”符号)即可进入相应文件夹。如果要创建此文件夹在客户机上可以显示的共享文件夹,则需另外创建,单击如图18所示对话框中“新建共享”按钮即可。

 


图18

  好了通过以上各步的配置,现在就可以通过网上邻居查看其它计算机上的共享资源了。如在Windows 98与Windows 2000 Pro系统的对等网中,在Windows 2000 Pro中双击“网上邻居”然后双击“选择邻近的计算机”选项即可打开如图19所示对话框,在这个对话框中就显示了对等网中所有计算机。要查看某计算机的共享资源,只需双击相应教育处机名即可


图19

  以上介绍的是Windows 98系统中对等网的配置,在Windows 2000 Pro客户机中可以按类似方法配置,要注意的是,客户机的名称和IP地址不要与前面Windows 98客户机重复,文件夹的共享设定要参照上面的说明进行。

  下一篇我们将正式接触以太局域网的另一基础网络设备——集线器了。

网络学堂之七:构建对等网

  在前两篇中已对网线的制作和网卡配制相关的基础知识有了一个全面的了解,本篇就要利用毅面所介绍的知识进行最简单的网络组建。

  通过前面的学习,我们知道,计算机网络按其工作模式分主要有:对等模式和客户机/服务器(C/S)/模式,在家庭网络中通常采用对等腰网模式,而在企业网络中则通常采用C/S模式。因为对等腰三角形模式注重的是网络的共享功能,而企业网络更注重的是文件资源管理和系统资源安全等方面。对等网除了应用方面的特点外,更重要是的它的组建方式简单,投资成本低,非常容易组建,非常适合于家庭、小型企业选择使用。学习网络组建当然是从最基本的着手,而对等网是最简单的一种网络模式,它可以只需几条网线,加上几块网卡就可以,而这些知识我们在前面已作详细介绍,完全具备基本的对等组建能力。

  一、对等网简介

  “对等网”也称“工作组网”,那是因为它不像企业专业网络中那样是通过域来控制的,在对等网中没有“域”,只有“工作组”,这一点要首先清楚。正因如此,我们在后面的具体网络配置中,就没有域的配置,而需配置工作组。很显然,“工作组”的概念远没有“域”那么广,所以对等网所能随的用户数也是非常有限的。在对等网络中,计算机的数量通常不会超过20台,所以对等网络相对比较简单。在对等网络中,对等网上各台计算机的有相同的功能,无主从之分,网上任意节点计算机既可以作为网络服务器,为其它计算机提供资源;也可以作为工作站,以分享其它服务器的资源;任一台计算机均可同时兼作服务器和工作站,也可只作其中之一。同时,对等网除了共享文件之外,还可以共享打印机,对等网上的打印机可被网络上的任一节点使用,如同使用本地打印机一样方便。因为对等网不需要专门的服务器来做网络支持,也不需要其他组件来提高网络的性能,因而对等网络的价格相对要便宜很多。

  对等网主要有如下特点:

  (1)网络用户较少,一般在20台计算机以内,适合人员少,应用网络较多的中小企业; 
  (2)网络用户都处于同一区域中;
  (3)对于网络来说,网络安全不是最重要的问题。

  它的主要优点有:网络成本低、网络配置和维护简单。

  它的缺点也相当明显的,主要有:网络性能较低、数据保密性差、文件管理分散、计算机资源占用大。
 二、对等网结构

  虽然对等网结构比较简单,但根据具体的应用环境和需求,对等网也因其规模和传输介质类型的不同,其实现的方式也有多种,下面分别介绍:

  1、两台机的对等网

  这种对等网的组建方式比较多,在传输介质方面既可以采用双绞线,也可以使用同轴电缆,还可采用串、并行电缆。所需网络设备只需相应的网线或电缆和网卡,如果采用串、并行电缆还可省去网卡的投资,直接用串、并行电缆连接两台机即可,显然这是一种最廉价的对等网组建方式。这种方式中的“串/并行电缆”俗称“零调制解调器”,所以这种方式也称为“远程通信”领域。但这种采用串、并行电缆连接的网络的传输速率非常低,并且串、并行电缆制作比较麻烦,在网卡如此便宜的今天这种对等网连接方式比较少用。

  2、三台机的对等网

  如果网络所连接的计算机不是2台,而是3台,则此时就不能采用串、并行电缆连接了,而必须采用双绞线或同轴电缆作为传输介质,而且网卡是不能少的。如果是采用双绞线作为传输介质,根据网络结构的不同又可有两种方式:(1)一种是采用双网卡网桥方式,就是在其中一台计算机上安装两块网卡,另外两对路机各安装一块网卡,然后用双绞线连接起来,再进行有关的系统配置即可。(2)添加一个集线器作为集结线设备,组建一个星形对等网,三台机都直接与集线器相连。从这种方式的特点来看,虽然可以省下一块网卡,但需要购买一个集线器,网络成本会较前一种高些,但性能要好许多。

  如果采用同轴电缆作为传输介质,则不需要购买集线器了,只需把三台机用同轴电缆网线直接串连即可。虽然也只需3块网卡,但因同轴电缆较双绞线贵些,所以总的投资与用双绞线差不多。

  3、多于3台机的对等网

  对于多于3台机的对等网组建方式只能有两种:(1)采用集线设备(集线器或交换机)组成星形网络;(2)用同轴电缆直接串连。虽然这类对等网也可采用双网卡网桥方式,就是在除了首、尾两台计算机外都采用双网卡配置,但这种方式因要购差不多两倍的网卡,成本较高;且双网卡配置对计算机硬件资源要求较高,所以不可能有人会用这种方式来实现多台计算机的对等网到连。

  以上介绍是对等网的硬件配置,在软件系统方面,对等网更是非灵活,几乎所有操作系统都可以配置对等网,包括网络专用的操作系统,如Windows NT Server/2000 Server/2003 Server,Windows 9x/ME/2000 Pro/XP等也都可以,早期的DOS系统也可以。

  因为对等网类型繁多, 所用系统组成也是多种多样,不可能对所有类型的对等网组建方法都一一介绍,况且实际应用中有些对等网类型并不常用,如直接电缆连接的对等网、双网卡对等网等,在操作系统方面如DOS、Windows 95、Windows NT/2000/2003 Server等也通常不应用于对等网中,所以在本篇仅介绍目前在家庭中常用的Windows 98及Windows 2000 Pro系统中双绞线两台机的对等网配置方法。多机及其它操作系统下对等网的配置方法类似,参照即可。
 三、Windows 98与Windows 2000 Pro双机双绞线对等网组建

  在整个组网过程中,总的来说可以分为如下几个大步:

  (1)。 网线制作;
  (2)。 网卡的硬件安装;
  (3)。 网卡的连接
  (4)。 网卡驱动程序的安装与系统配置

  在以上四步中,最重要、最复杂的是网卡驱动程序的安装与系统配置。下面具体介绍以上各步。

  1.网线的制作及连接

  第1步,按1-3,2-6交叉法制作一条五类(或超五类)双绞线(因具体的网线制作方法在前面已作详细介绍,在此不再赘述);

  第2步,按前面所作的介绍准备两块PCI总线接口、10/100Mbps自适应的RJ-45以太网卡(可以是同一型号网卡,也可以是不同型号的网卡);

  第3步,把两网卡分别插入到计算机空余PCI插槽中,然后用螺钉固定在机箱上。

  【注意】在计算机中插入网卡的方法与其它PCI板卡的插入方法完全一样,PCI插槽也没有规定,只是有PCI空闲即可利用。

  第4步,把网线的两端的水晶头分别插入两台计算机已安装的网卡的RJ-45接口中,这样就完成了两台计算机的网络连接。

  通过以上简单的4步,就把网卡的物理安装和网络连接完成了,下面着重介绍网卡的驱动程序安装与系统配置。
 2、网卡驱动程序的安装

  网卡虽然安装了,但如果不进行驱动程序的安装与系统的配置也是不能起到网络连接的作用的。不过随着微软Windows系统对硬件支持范围的扩大,许多网卡的驱动程序都已内置,所以通常是不需要另外提供网卡的厂家驱动程序,当系统进入后即可检测到硬件,然后安装相应Windows系统中自带的驱动程序,真正实现“即插即用”。但为了实现网卡的真正性能,如果有网卡厂家的驱动程序,建议还是安装厂家提供的驱动程序;如果没有,当然可以使用Windows系统自带的了,网卡也可正常工作;如果Windows系统没有提供此型号网卡的驱动程序,则一定要安装厂家的驱动程序或者选择一个兼容该型号网卡的其它型号驱动程序。

  为了使大家掌握网卡驱动程序的安装方法,现介绍最难安装的Windows 98系统中网卡驱动程序的安装方法,其它系统的驱动程序安装方法参照即可。具体步骤如下(因实际情况下,有多种安装网卡驱动程序的方法,在此仅以最基本的安装方法进行介绍):

  第1步,在控制面板中双击“添加新硬件”选项,出现如图1所示的添加新硬件向导对话框。


图1

  

  第2步,单击“下一步”按钮,出现如图2所示对话框。这个对话框提示用户系统将对新添加的硬件进行搜索。


图2

 第5步,先选择第一个单选项,单击“下一步”按钮出现如图5所示对话框。在这个对话框中显示了搜索驱动程序的多种定位方法,根据实际选择一项或多项复选项。

 


图5

  如果选择的不是如图4所示对话框中的第一个单选项,而是下面那个,则出现如图6所示的对话框。在这个对话框中列出了所有兼容此网卡的类型,选择一个即可。如果还不能确定,则可单击对话框中的“从磁盘安装”按钮,从厂家提供的磁盘中安装网卡的驱动程序。


图6

  选择好了驱动程序的位置后,单击如图5所示的“下一步”按钮或者是如图6所示“确定”按钮后即可自动完成驱动的安装了。安装完后系统提示要求重新启动系统,重启后生效。

  【说明】Windows 98第二版支持目前市场上绝大多数网卡,用户最好选择支持即插即用(Plug&Play)的网卡产品。这样,当Windows 98重新启动时,会自动检测到网卡并为其安装相应的软件驱动程序,也可自动分配该网卡的I/O地址、IRQ和DMA,并保证各设备之间不会发生冲突,所以不再需要人工配置这些。


  3、网卡的配置

  网卡的配置是整个对等网组建成功与否的关键,在网卡的配置中需要做以下几个方面的配置:

  (1)安装网络客户
  (2)安装网络协议
  (3)配置工作组
  (4)配置客户机网卡的IP地址

  通常在安装网卡后,基本的网络组件,如网络客户、TCP/IP协议都已安装,我们只需进行一些必要的配置即可。下面分以Step-By-Step的方式介绍在网卡安装后系统未自动完成的部分。

  第1步,在控制面板中双击“网络”选项,出现如图7所示的网络属性对话框(如果在桌面上已有“网上邻居”项,也可直接在其上单击鼠标右键,然后选择“属性”选项,同样可打开这样一个网络属性对话框)。


图7


图8




  第2步,因为要Windows 98对等网中实现诸如打印共享之类的低级网络任务,仍需使用较低级的NetBEUI协议,所以除了系统自动安装的TCP/IP协议外,我们还需添加这个协议(在Windows ME/2000/XP等系统中不需要)。安装的方法很简单,只需在如图7所示对话框中单击“添加”按钮,即可打开如图8所示对话框。

 

  第3步,选择如图8所示对话框中的“协议”项,然后单击“添加”按钮后即可打开如图9所示对话框,在这个对话框中的左边栏选择“Microsoft”选项,然后在右边列表中双击“NetBEUI”选项即可。


图9

  第4步,添加了NetBEUI协议后不要急于重新启动系统,为了完成对等资源的共享安装,要把文件及打印的共享服务程序加进去。方法与添加NetBEUI协议类似,不同的中是在如图8所示对话框中选择的不是“协议”,而是“服务”,然后在出现的如图10所示对话框中双击“Microsoft网络上的文件与打印机共享”选项即可。添加了这个服务项后,对等网中的用户才可以通过网络进行文件和打印机共享。


图10




  第5步,安装了协议和服务后,现在就要来配置客户机网卡的IP地址了。在如图7所示对话框中选择对应网卡的TCP/IP项(注意不是选择物理的网卡项),如图11所示。然后单击“属性”按钮,打开网卡的TCP/IP属性配置对话框,如图12所示。

 


图11

  


图12

  第6步,因为在对等网中没有专门的DHCP服务器来为各客户机自动IP地址,所以需要在如图12所示对话框中选择“指定IP地址”单选项,然后在下面的“IP地址”和“子网掩码”栏中分别输入一个IP地址和子网掩码。

  【说明】在局域网通常采用局域网专用的IP地址段来指定IP地址,这个专用IP地址段为“192.168.0.0 ̄192.168.255.255”。当然也可以采用其它C类IP地址。子网掩耳盗铃码要注意与相应的IP地址类型对应,如C类IP地址的子网掩码,在没有子网时为“255.255.255.0”。

  在TCP/IP协议属性基本的只需配置IP地址项,如果还要实现网络连接共享,如共享上网,则还需要在客户端配置“网关”项,网关直接指向提供共享上网的主机局域网网卡IP地址。因不属于本篇重点,在此不再详叙。

  第7步,单击如图7所示对话框中的“文件及打印共享”按钮,打开如图13所示对话框,全选两个复选项,这是为了其它客户机能够共享本机资源而设的。当然这也要根据实际情况而定,如果此机上没有连接打印机,则不需选择“允许其他计算机使用我的打印机”复选项。


图13




  第8步,在如图7所示对话框“主网络登陆”下拉列表中选择“Windows登陆”选项,这样在每次启动系统时就不会出现身份验证对话框,要求用户输入密码。实际上在Windows 98系统中,这些都是没有任何意义的,因为只需按“ESC”键或单击对话框中的“取消”按钮都可进入系统。

 

  第9步,在如图7所示的对话框中单击“标识”标签项,对话框如图14所示。在这个对话框中要为计算机配置网络中唯一的计算机名,并配置网络的工作组名。配置好后单击“确定”按钮生效。


图14

  好了,所有选项设置好,单击“确定”按钮,系统即进行自动更新,完后即要求重新启动系统,重启后即生效。

  4。 共享文件夹的配置

  不像企业客户机/服务器模式下的网络一样,文件资源是采用访问权限来限制,而在对等网中只是通过共享文件夹的设定来实现资源的共享。

  共享文件夹的设定方法非常简单,具体如下:

  第1步,在需共享的文件夹上单击鼠标右键,在出现快捷菜单中选择“共享”选项,如图15所示。选择“共享”选项后出现如图16所示的共享文件夹设定对话框。


图15


图16




 第2步,在如图16所示对话框中,选择“共享为”单选项,然后在“共享名”中输入该共享文件夹的共享名称。如果还想设定访问权限,可以在“访问类型”域中选择相应单选项:

 

  ·只读:如果选择此单选项,则用户可以共享此共享文件夹,但不能修改共享文件夹中的内容,更不能删除了,系统默认选择此单选项,为了安全起见,也建议采用此共享类型;

  ·完全:如果选择此单选项,则用户可以完全控制共享文件夹中的文件,包括任何修改和删除;

  ·根据密码访问:如果选择此单选项,则可在“只读密码”文本框中输入只读密码,这样其它用户要共享此共享文件夹中的文件,就必须先输入这个只读密码,而且用户只能以只读的方式打开其中的文件,而不能修改和删除。

  通过以上几步,设置好了共享后,相应的文件夹中就会有一个蓝色手形标志托住,如图17所示。


图17

 不过要注意的是,在Windows MT/2000/2003系统中,有一种共享文件夹是不能在客户机中看到的,那就是系统本身用于管理的共享文件夹,这类共享文件夹的共享名后面都带有一个“¥”,如图18所示。这类共享文件夹通常是逻辑磁盘,这主要是出于安全和管理方面考虑的,因为整个磁盘如果暴露于一般用户则自即日起很石阶的,但有时又需要对整个磁盘进行远程管理,这时就需要共享了。用户虽然在网上邻居中是看不到这类共享文件夹,但实际上是存在的,只需要DOS提示符下直接输入其相应共享文件夹名(不包括“¥”符号)即可进入相应文件夹。如果要创建此文件夹在客户机上可以显示的共享文件夹,则需另外创建,单击如图18所示对话框中“新建共享”按钮即可。

 


图18

  好了通过以上各步的配置,现在就可以通过网上邻居查看其它计算机上的共享资源了。如在Windows 98与Windows 2000 Pro系统的对等网中,在Windows 2000 Pro中双击“网上邻居”然后双击“选择邻近的计算机”选项即可打开如图19所示对话框,在这个对话框中就显示了对等网中所有计算机。要查看某计算机的共享资源,只需双击相应教育处机名即可


图19

  以上介绍的是Windows 98系统中对等网的配置,在Windows 2000 Pro客户机中可以按类似方法配置,要注意的是,客户机的名称和IP地址不要与前面Windows 98客户机重复,文件夹的共享设定要参照上面的说明进行。

  下一篇我们将正式接触以太局域网的另一基础网络设备——集线器了。

网络学堂二十一:路由器高级配置命令

网络学堂二十一:路由器高级配置命令




  我们在前面讲过路由器它本身自带有独立的操作系统,而且它需要面对各种复杂的网络环境,所以对路由器的配置过程不是一个简单的过程。除了上一篇所介绍的一些基本配置外,在实际应用中还需要进行许多项特殊的配置,如广域网协议配置、局域网协议配置等。本篇要介绍的是高级用户最常用的路由器命令方式配置方法。

  一、路由器的命令配置方式

  新购置的路由器由于没有配置文件,所以需进行初始配置。待终端通讯参数设置完毕后,接好路由器控制台,先打开终端电源,后开路由器电源,之后就可以进入初始配置了。我在这里仍以Cisco路由器的基本配置方法进行介绍,其它路由器的初始化配置过程原理差不多。

  我们在前面就已经介绍,路由器的配置主要有两种方式:一种命令方式,另一种是对话方式,命令方式较为灵活,针对性较强,所以路由器的一些高级配置通常都是采用这种方式,但这种方式比较复杂,需要记住许多路由器配置命令,对于新手来说不容易。对话方式相对来说没那么灵活,但容易接受,就像我们用Windows 系统比用UNIX系统要容易一些一样。下面我们先来看看用命令方式是如何进行的。

  先对配置的路由器硬件进行连接,用Cisco随机附带的CONSOLE线,一端连在Cisco3640路由器的CONSOLE口,一端连在计算机的COM口。打开电脑,启动超级终端程序,为您的连接取个名字,比如Cisco_SETUP,下一步选定连接时用COM1,下一步选定第秒位数9600,数据位8,奇偶校验无,停止位1,数据流控制无,最后选确定。其实这里的连接方式与我们在前面所介绍的换机初始化配置方式一样,具体连接方式参见前面有关内容。

  因为路由器的基本配置包括几个相对独立的部分,所以下面就分别讲述,在讲述的过程中为了向大家作一个较详细的说明,在命令语句中穿插了一些解释性的语句,前面都带有一个"//"符号。


  1.配置以太网端口

  Cisco的各种命令均可以简写,只要不与其他命令重复即可,如"configure terminal(终端配置)"可以写成"conf t",但这也并不是说可以乱写,配置多了就会发现它的一些基本缩写规律的,在此之前最好还是参照有关书籍进行。配置以太网端口的主要命令如下所示:

  # int e0
  // 指定E0口。
  # ip addr ABCD XXXX // "ABCD"为以太网地址,"XXXX"为子网掩码。
  # ip addr ABCD XXXX secondary // E0口可同时支持多个地址类型,只要各个地址类型不在同一个网段即可。
  # no shutdown // 激活E0口。
  # exit

  2.配置串口(SERIAL)

  这些配置主要是为了路由器与广域网相连,下面是对几个常见的广域网协议的配置过程中所使用的基本命令所作的说明。

  (1)X.25的配置

  # conf t
  # int S0
  # ip addr ABCD XXXX
  # ip addr ABCD XXXX secondary // S0口同样支持多个地址类型。
  # encap X25 // 封装X.25协议。
  # x25 addr ABCD // ABCD为S0的X.25端口地址,由电信部门提供。
  # x25 map ip ABCD XXXX br // 映射X.25地址,ABCD为对方路由器(如S0)的IP地址,XXXX为对方路由器(如S0)的X.25端口地址。
  # x25 htc X // 最高双向通道数X的取值范围为1~4095,要根据邮电局实际提供的数字配置。
  # x25 nvc X // 配置永久虚电路数。X不可超过邮电局实际提供的数值,否则将影响数据的正常传输。
  # no shutdown
  # exit
(2)帧中继的配置

  # conf t
  # int s0
  # ip addr ABCD XXXX
  # encap frante_relay
  # no nrzi_encoding
  NRZI=NO。
  # frame_relay lmi_type q933a // 在这里LMI的类型选择了"Q933A"标准。LMI(Local management Interface)有3种,分别是ANSI的T1.617、CCITT的Q933A和Cisco特有的标准。
  # frame-relay intf-typ A/B/C // A/B/C为帧中继设备类型,它们分别是DTE设备、DCE交换机或NNI(网络接点接口)支持设备。
  # frame_relay interface_dlci 110 br // 配置DLCI(数据链路连接标识符)。
  # frame-relay map ip ABCD XXXX broadcast // 建立帧中继映射。"ABCD"为对方IP地址,"XXXX"为本地DLCI号,broadcast允许广播向前转发或更新路由。
  # no shutdown
  # exit

  (3)帧中继子接口的配置

  # conf t
  # int s0.1 point-to-point // 对应S0的子接口1,点对点方式。
  # ip addr ABCD XXXX // "ABCD"为子口1的IP地址,"XXXX"为子网掩码。
  # frame-relay interface-dlci 100 br

  (4)配置拨号备份

  ·配置备份主口

  # conf t
  # int s0 // S0为主口。
  # backup int asy 1 // A1口为备份口。
  # backup delay 0 1 // 延时为1秒。

  ·配置虚拟接口

  # conf t
  # ip addr ABCD XXXX //" ABCD"为虚拟接口的IP地址,"XXXX"为子网掩码。
  # encap ppp
  # dialer in-band // 激活随叫随拨功能。
  # dialer idle-timeout 7200
  # dialer map ip ABCD modem-script call broadcast 1234567 br // 映射对应的拨号口。ABCD为对方拨号口的ip地址,1234567为对应的电话号码。
  # dialer_group 1 // 定义拨号组成员。
·配置防火墙

  # dialer_list 1 pro ip permit // 允许ip协议通过。
  ·配置连接口令
  # user name ABCD pass XXXX // "ABCD"为对方主机名,"XXXX"为连接口令。
  ·配置拨号字符串
  # conf t
  # chat-script call "ABORT BUSY ABORT ERROR" atdt 1234567 TIMEOUT 45 "CONNECT" //"1234567"为对方电话号码,根据实际修改即可。

  ·配置拨号连接密码

  # conf t
  # username ROU1 pass XXXX //" ROU1"为对方路由器名,"XXXX"为连接密码。

  ·配置线路

  # conft
  # line aux 0
  # modem inout // MODEM双向传输。
  # modem autoconfigure discovery // 自动配置MODEM的参数。
  # transport input all
  # speed 51200 // MODEM的收发速率为51200bps。
  # exit

  (5)配置同步/异步口

  # conf t
  # int s2
  # ph asyn // 配置S2为异步口。
  # ph sync // 配置S2为同步口。

  3 . 配置路由表

  这是对路由器的路由表及其路由协议进行配置,具体所使用的命令如下:

  (1)动态路由的配置

  # conf t
  # router eigrp 20 // 使用EIGRP路由协议,常用的路由协议有RIP、IGRP、IS-IS等。
  # passive-interface serial0 // 若S0与X.25相连,则输入本条指令。
  # passive-interface serial1 // 若S1与X.25相连,则输入本条指令。
  # network ABCD //" ABCD"为本机的以太网地址。
  # network XXXX // "XXXX"为S0的IP地址。
  # no auto-summary
  # exit

  (2)静态路由的配置

  # ip router ABCD XXXX YYYY 90 // " ABCD"为对方路由器的以太网地址,"XXXX"为子网掩码,"YYYY"为对方对应的广域网端口地址。
  # dialer-list 1 protocol ip permail

  (3)备份配置文件到硬盘

  首先在计算机上启动TFTP程序,然后在提示符下按如下格式输入:

  # copy run tftp // 在硬盘上建立一个空文件且有读写权限,才能备份成功。

  (4)恢复备份配置文件到路由器

  # copy tftp run

  (5)在路由器上建一个备份

  # copy run start
二、对话方式下路由器的基本配置

  利用设置对话过程可以避免手工输入命令的烦琐,在特权命令状态使用SETUP命令即可进入对话配置状态。进入设置对话过程后,路由器首先会显示一些如下类似提示信息:

  --- System Configuration Dialog ---
  At any point you may enter a question mark '?' for help.
  Use ctrl-c to abort configuration dialog at any prompt.
  Default settings are in square brackets '[ ]'.

  这是告诉你在设置对话过程中的任何地方都可以键入"?"得到系统的帮助,按ctrl-c可以退出设置过程,缺省设置将显示在"[ ]"中。然后路由器会问是否进入设置对话:

  Would you like to enter the initial configuration dialog? [yes]:

  如果按y或回车,路由器就会进入设置对话过程。首先你可以看到路由器各端口当前的配置状况,如下所示:

  First, would you like to see the current interface summary? [yes]: (选择"y")。
  Any interface listed with OK? value "NO" does not have a valid configuration (所有端口的配置情况列表)。

  Interface
IP-Address
OK?
Method
Status
Protocol

Ethernet0
unassigned
NO
unset
up
up

Serial0
unassigned
NO
unset
up
up

………
………

……





  然后,就可对路由器进行全局的配置了,先进行初始化配置。

  Configuring global parameters:
  1.Enter host name [Router]:(设置路由器名)。
  2.The enable secret is a one-way cryptographic secret used instead of the enable password when it exists. Enter enable secret: cisco(设置进入特权状态的密文(secret),此密文在设置以后不会以明文方式显示)。
  3.The enable password is used when there is no enable secret and when using older software and some boot images. Enter enable password: pass(设置进入特权状态的密码(password),此密码只在没有密文时起作用,并且在设置以后会以明文方式显示)。
  4.Enter virtual terminal password: cisco (设置虚拟终端访问时的密码)
  5.询问是否要设置路由器支持的各种网络协议:
  Configure SNMP Network Management? [yes]:
  Configure DECnet? [no]:
  Configure AppleTalk? [no]:
  Configure IPX? [no]:
  Configure IP? [yes]:
  Configure IGRP routing? [yes]:
  Configure RIP routing? [no]:
  ………
  6.如果配置的是拨号访问服务器,系统还会设置异步口的参数:

  Configure Async lines? [yes]:
  (1) 设置线路的最高速度:
  Async line speed [9600]:
  (2) 是否使用硬件流控:
  Configure for HW flow control? [yes]:
  (3) 是否设置modem:
  Configure for modems? [yes/no]: yes
  (4) 是否使用默认的脚本:
  Configure for default chat script? [yes]:
  (5) 是否设置异步口的PPP参数:
  Configure for Dial-in IP SLIP/PPP access? [no]: yes
  (6) 是否使用动态IP地址:
  Configure for Dynamic IP addresses? [yes]:
  (7) 是否使用缺省IP地址:
  Configure Default IP addresses? [no]: yes
  (8) 是否使用TCP头压缩:
  Configure for TCP Header Compression? [yes]:
  (9) 是否在异步口上使用路由表更新:
  Configure for routing updates on async links? [no]: y
  (10) 是否设置异步口上的其它协议。


  7.接下来,系统会对每个接口进行参数的设置,它是一个个端口进行的,因为所有端口几乎设置的勘察都是一样,所以下面我们就仅举一个这样的端口配置实例。

  Configuring interface Ethernet0: (询问是否配置第一个以太网端口,在这下面又有几个分选项,可以分别设置)。

  (1) Is this interface in use? [yes]: (是否使用此接口)
  (2) Configure IP on this interface? [yes]:(是否设置此接口的IP参数)
  (3) IP address for this interface: 192.168.1.20(设置接口的IP地址)
  (4) Number of bits in subnet field [0]: Class C network is 192.168.1.20, 0 subnet bits; mask is /24 (设置接口的IP子网掩码)
  ……

  在设置完所有接口的参数后,系统会把整个设置对话过程的结果显示出来:

  The following configuration command script was created:
  hostname Router
  enable secret 5 $1$W5Oh$p6J7tIgRMBOIKVXVG53Uh1
  enable password pass
  …………
  请注意在enable secret后面显示的是乱码,因为是密文,而enable password后面显示的是设置的内容。 显示结束后,系统会问是否使用这个设置:

  Use this configuration? [yes/no]: yes
  如果回答yes,系统就会把设置的结果存入路由器的NVRAM中,然后结束设置对话过程,使路由器开始正常的工作。

  至此整个路由器的基本配置过程就算完成了,在上配置中所作的选择要根据实际情况而定,我在此只不过是介绍一下路由器的基本配置界面,给大家一个配置方法,使大家有一个感性认识,至于其中的具体设置内容,我想如果英文稍好的话,看懂它是没什么问题的,所以没有必要对我以上设置死记。


  三、局域网路由协议配置

  以上我们对路由器的基本配置方法作了详细的说明,其实大多数情况下我们不能仅通过以上基本配置方法来实现路由器所有参数的精确配置,多数情况下需要针对具体要求对某几项作单独设置。如局域网协议和广域网协议都需要详细设置,只有这样对能使路由器适应各种复杂的网络环境中。下面我们先来看看路由器局域网协议方面的配置过程。

  1.RIP协议的配置

  RIP(Routing information Protocol)是应用较早、使用较普遍的内部网关协议(Interior Gateway Protocol,简称IGP),适用于小型同类网络,是典型的距离向量(distance-vector)协议。文档见RFC1058、RFC1723。

  RIP通过广播UDP报文来交换路由信息,每30秒发送一次路由信息更新。RIP提供跳跃计数(hop count)作为尺度来衡量路由距离,跳跃计数是一个包到达目标所必须经过的路由器的数目。如果到相同目标有二个不等速或不同带宽的路由器,但跳跃计数相同,则RIP认为两个路由是等距离的。RIP最多支持的跳数为15,即在源和目的网间所要经过的最多路由器的数目为15,跳数16表示不可达。相关命令如表1所示。

  表1 RIP路由协议配置命令 任务
命令

指定使用 RIP 协议
router rip

指定 RIP 版本
version {1|2} 1

指定与该路由器相连的网络
network network



  注:Cisco的RIP版本2支持验证、密钥管理、路由汇总、无类域间路由(CIDR)和变长子网掩码(VLSMs)

  2.IGRP协议的配置

  IGRP (Interior Gateway Routing Protocol)是一种动态距离向量路由协议,它由Cisco公司八十年代中期设计。使用组合用户配置尺度,包括延迟、带宽、可靠性和负载。

  缺省情况下,IGRP每90秒发送一次路由更新广播,在3个更新周期内(即270秒),没有从路由中的第一个路由器接收到更新,则宣布路由不可访问。在7个更新周期即630秒后,Cisco IOS 软件从路由表中清除路由。相关命令如表2所示。

  表2 IGRP协议配置命令 任务
命令

指定使用 RIP 协议
router igrp autonomous-system 1

指定与该路由器相连的网络
network network

指定与该路由器相邻的节点地址
neighbor ip-address



  注:autonomous-system可以随意建立,并非实际意义上的autonomous-system,但运行IGRP的路由器要想交换路由更新信息其autonomous-system需相同。


  3. OSPF协议的配置

  OSPF(Open Shortest Path First)是一个内部网关协议(Interior Gateway Protocol,简称IGP),用于在单一自治系统(autonomous system,AS)内决策路由。与RIP相对,OSPF是链路状态路有协议,而RIP是距离向量路由协议。

  链路是路由器接口的另一种说法,因此OSPF也称为接口状态路由协议。OSPF通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,每个OSPF路由器使用这些最短路径构造路由表。 相关命令如表3所示。

  表3 OSPF协议配置表 任务
命令

指定使用 OSPF 协议
router ospf process-id 1

指定与该路由器相连的网络
network address wildcard-mask area area-id 2

指定与该路由器相邻的节点地址
neighbor ip-address



  【注】(1)OSPF路由进程process-id必须指定范围在1-65535,多个OSPF进程可以在同一个路由器上配置,但最好不这样做。多个OSPF进程需要多个OSPF数据库的副本,必须运行多个最短路径算法的副本。process-id只在路由器内部起作用,不同路由器的process-id可以不同。

  (2)wildcard-mask 是子网掩码的反码, 网络区域ID area-id在0-4294967295内的十进制数,也可以是带有IP地址格式的x.x.x.x。当网络区域ID为0或0.0.0.0时为主干域。不同网络区域的路由器通过主干域学习路由信息。

  为了安全的原因,我们可以在相同OSPF区域的路由器上启用身份验证的功能,只有经过身份验证的同一区域的路由器才能互相通告路由信息。在默认情况下OSPF不使用区域验证。通过两种方法可启用身份验证功能,纯文本身份验证和消息摘要(md5)身份验证。纯文本身份验证传送的身份验证口令为纯文本,它会被网络探测器确定,所以不安全,不建议使用。而消息摘要(md5)身份验证在传输身份验证口令前,要对口令进行加密,所以一般建议使用此种方法进行身份验证。

  使用身份验证时,区域内所有的路由器接口必须使用相同的身份验证方法。为起用身份验证,必须在路由器接口配置模式下,为区域的每个路由器接口配置口令。命令如表4所示。

  表4 身份验证命令列表 任务
命令

指定身份验证
area area-id authentication [message-digest]

使用纯文本身份验证
ip ospf authentication-key password

使用消息摘要( md5 )身份验证
ip ospf message-digest-key keyid md5 key




  4. IPX协议设置

  IPX协议与IP协议是两种不同的网络层协议,它们的路由协议也不一样,IPX的路由协议不象IP的路由协议那样丰富,所以设置起来比较简单。但IPX协议在以太网上运行时必须指定封装形式。有关命令如表5所示。 IPX的封装类型列表如表6所示。

  表5 IPX协议有关命令 列表 启动 IPX 路由
ipx routing

设置 IPX 网络及以太网封装形式
ipx network network [encapsulation encapsulation-type] 1

指定路由协议,默认为 RIP
ipx router {eigrp autonomous-system-number | nlsp [tag] | rip}



  【注】network的 范围是从1 到FFFFFFFD.

  表6 IPX封装类型列表 接口类型
封装类型
IPX 帧类型

Ethernet
novell-ether (默认)

arpa

sap

snap
Ethernet_802.3

Ethernet_II

Ethernet_802.2

Ethernet_Snap

Token Ring
sap (默认)

snap
Token-Ring

Token-Ring_Snap

FDDI
snap (默认)

sap

novell-fddi
Fddi_Snap

Fddi_802.2

Fddi_Raw



  四、路由器广域网协议配置

  因为路由器不仅用在局域网内部,而且在广域网中的应用更为广泛,所以路由器也有它相应的广域网协议,在路由器的广域网使用前必须对其相应协议进行配置。下面就对路由器常见的几种广域网协议配置过程进行一下简单的说明。


  1. HDLC协议的配置

  HDLC是Cisco路由器使用的缺省协议,一台新路由器在未指定封装协议时默认使用HDLC协议来封装。与它有关的配置命令如表7所示。

  表7 HDLC协议配置命令 任务
命令

设置 HDLC 封装
encapsulation hdlc

设置 DCE 端线路速度
clockrate speed

复位一个硬件接口
clear interface serial unit

显示接口状态
show interfaces serial [unit] 1



  下面给出一个显示Cisco路由器同步串口状态的例子,在例子中所显示的是路由器已作的相应设置。.

  Router#show interface serial 0
  Serial 0 is up, line protocol is up
  Hardware is MCI Serial
  Internet address is 150.136.190.203, subnet mask is 255.255.255.0
  MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255
  Encapsulation HDLC, loopback not set, keepalive set (10 sec)
  Last input 0:00:07, output 0:00:00, output hang never
  Output queue 0/40, 0 drops; input queue 0/75, 0 drops
  Five minute input rate 0 bits/sec, 0 packets/sec
  Five minute output rate 0 bits/sec, 0 packets/sec
  16263 packets input, 1347238 bytes, 0 no buffer
  Received 13983 broadcasts, 0 runts, 0 giants
  2 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 2 abort
  22146 packets output, 2383680 bytes, 0 underruns
  0 output errors, 0 collisions, 2 interface resets, 0 restarts

  2.PPP协议配置

  PPP(Point-to-Point Protocol)是SLIP(Serial Line IP protocol)的继承者,它提供了跨过同步和异步电路实现路由器到路由器(router-to-router)和主机到网络(host-to-network)的连接。

  CHAP(Challenge Handshake Authentication Protocol)和PAP(Password Authentication Protocol) 通常被用于在PPP封装的串行线路上提供安全性认证。使用CHAP和PAP认证,每个路由器通过名字来识别,可以防止未经授权的访问。与PPP协议配置有关的命令如表8所示。

  表8 PPP协议配置命令 任务
命令

设置 PPP 封装
encapsulation ppp 1

设置认证方法
ppp authentication {chap | chap pap | pap chap | pap} [if-needed] [list-name | default] [callin]

指定口令
username name password secret

设置 DCE 端线路速度
clockrate speed




  3.x.25协议配置

  【注】要使用CHAP/PAP必须使用PPP封装。在与非Cisco路由器连接时,一般采用PPP封装,其它厂家路由器一般不支持Cisco的HDLC封装协议。

    X.25规范对应OSI三层,X.25的第三层描述了分组的格式及分组交换的过程。X.25的第二层由LAPB(Link Access Procedure, Balanced)实现,它定义了用于DTE/DCE连接的帧格式。X.25的第一层定义了电气和物理端口特性。

  X.25网络设备分为数据终端设备(DTE)、数据电路终端设备(DCE)及分组交换设备(PSE)。DTE是X.25的末端系统,如终端、计算机或网络主机,一般位于用户端,Cisco路由器就是DTE设备。DCE设备是专用通信设备,如调制解调器和分组交换机。PSE是公共网络的主干交换机。

  X.25定义了数据通讯的电话网络,每个分配给用户的x.25 端口都具有一个x.121地址,当用户申请到的是SVC(交换虚电路)时,x.25一端的用户在访问另一端的用户时,首先将呼叫对方x.121地址,然后接收到呼叫的一端可以接受或拒绝,如果接受请求,于是连接建立实现数据传输,当没有数据传输时挂断连接,整个呼叫过程就类似我们拨打普通电话一样,其不同的是x.25可以实现一点对多点的连接。其中x.121地址、htc均必须与x.25服务提供商分配的参数相同。X.25 PVC(永久虚电路),没有呼叫的过程,类似DDN专线。与它有关的配置命令如表9所示。

  表9 X.25协议相关配置命令列表 任务
命令

设置 X.25 封装
encapsulation x25 [dce]

设置 X.121 地址
x25 address x.121-address

设置远方站点的地址映射
x25 map protocol address [protocol2 address2 [...[protocol9 address9 ]]] x121-address [option]

设置最大的双向虚电路数
x25 htc citcuit-number 1

设置一次连接可同时建立的虚电路数
x25 nvc count 2

设置 x25 在清除空闲虚电路前的等待周期
x25 idle minutes

重新启动 x25 ,或清一个 svc ,启动一个 pvc 相关参数
clear x25 {serial number | cmns-interface mac-address} [vc-number] 3

清 x25 虚电路
clear x25-vc

显示接口及 x25 相关信息
show interfaces serial

show x25 interface

show x25 map

show x25 vc



  【注】(1).虚电路号从1到4095,Cisco路由器默认为1024,国内一般分配为16。(2).虚电路计数从1到8,缺省为1。 (3).在改变了x.25各层的相关参数后,应重新启动x25(使用clear x25 {serial number | cmns-interface mac-address} [vc-number]或clear x25-vc命令),否则新设置的参数可能不能生效。同时应对照服务提供商对于x.25交换机端口的设置来配置路由器的相关参数,若出现参数不匹配则可能会导致连接失败或其它意外情况。

  4.Frame Relay协议配置

  帧中继(Frame Relay)是一种高性能的WAN协议,它运行在OSI参考模型的物理层和数据链路层。它是一种数据包交换技术,是X.25的简化版本。它省略了X.25的一些强健功能,如提供窗口技术和数据重发技术,而是依靠高层协议提供纠错功能,这是因为帧中继工作在更好的WAN设备上,这些设备较之X.25的WAN设备具有更可靠的连接服务和更高的可靠性,它严格地对应于OSI参考模型的最低二层,而X.25还提供第三层的服务,所以,帧中继比X.25具有更高的性能和更有效的传输效率。

  帧中继广域网的设备分为数据终端设备(DTE)和数据电路终端设备(DCE),Cisco路由器是作为 DTE设备。帧中继技术提供面向连接的数据链路层的通信,在每对设备之间都存在一条定义好的通信链路,且该链路有一个链路识别码。这种服务通过帧中继虚电路实现,每个帧中继虚电路都以数据链路识别码(DLCI)标识自己。DLCI的值一般由帧中继服务提供商指定。帧中继即支持PVC也支持SVC。

  帧中继本地管理接口(LMI)是对基本的帧中继标准的扩展。它是路由器和帧中继交换机之间信令标准,提供帧中继管理机制。它提供了许多管理复杂互联网络的特性,其中包括全局寻址、虚电路状态消息和多目发送等功能。与帧中继协议相关的配置如表10所示。

  表10 帧中继协议配置命令列表 任务
命令

设置 Frame Relay 封装
encapsulation frame-relay[ietf] 1

设置 Frame Relay LMI 类型
frame-relay lmi-type {ansi | cisco | q933a} 2

设置子接口
interface interface-type interface-number.subinterface-number [multipoint|point-to-point]

映射协议地址与 DLCI
frame-relay map protocol protocol-address dlci [broadcast] 3

设置 FR DLCI 编号
frame-relay interface-dlci dlci [broadcast]



  【注】(1).若使Cisco路由器与其它厂家路由设备相连,则使用Internet工程任务组(IETF)规定的帧中继封装格式。(2).从Cisco IOS版本11.2开始,软件支持本地管理接口(LMI)"自动感觉", "自动感觉"使接口能确定交换机支持的LMI类型,用户可以不明确配置LMI接口类型。 (3).broadcast选项允许在帧中继网络上传输路由广播信息。

网络学堂二十:路由器的配置

  路由器的软件配置相对它的硬件来说更是要复杂许多,它与其它网络接入设备不一样的是,不仅在硬件结构上相当复杂,而且还集成了相当丰富的软件系统。路由器有自己独立、功能强大的软件操作系统,而且这个操作系统的功能相当复杂、强大,因为它要面对全世界各种网络协议,就像一个会讲各种语言的人一样。但是各种不同品牌的操作系统不尽相同,它们的配置方法也有所区别,但是总的来说在路由器方面Cisco这一品牌始终是其它品牌的模板,其它多数品牌都是在一定程度上的模仿,所以我们在这一节主要介绍Cisco 路由器的IOS操作系统的基本操作。

  一、路由器的启动过程

  因为路由器要实现它的路由功能,必须进行适当的配置,然而要明白路由器的IOS发生作用的原理,我们还是先来看看路由器的启动过程,就像我们启动计算机一样。

  路由器开机时,先执行ROM中的程序,自检,再去查一个叫做config-register的内存单元,判断是去ROM监控程序、去IOS子集,还是去引导IOS。然后,再检查NVRAM中是否有配置文件,接着装载IOS,解压缩IOS(这时出现许多#)。如果此时按下+组合键,装载和引导IOS的过程就被终止,进入ROM监控程序状态。否则,引导完IOS后,就把控制权交给IOS。IOS读取config-register,判断是忽略现有的配置文件(0x2142),还是使用现有的配置文件(0x2102)。接着,根据配制文件设置各接口,建立工作环境。最后,显示提示符,等待用户键入命令。在提示符"主机名>"下就可以直接键入命令了。

  如果是台全新的机器,没有配制文件,路由器会进入一个自动对话式配置状态,向用户提出许多问题,回答完比配配置也就完成了。当然,也可以跳过它,以后自己再用命令一条条配置。也可以在提示符下,键入setup,再次进入对话式配置状态。


  二、路由器的几种配置方式

  由于路由器没有自己的输入设备,所以在对路由器进行配置时,一般都是通过另一台计算机连接到路由器的各种接口上进行配置。又因为路由器所连接的网络情况可能是千变万化,为了方便对路由器的管理,必须为路由器提供比较灵活的配置方法。一般来说对路由器的配置可以通过以下几种方法来进行:

  1.控制台方式

  这种方式一般是对路由器进行初始化配置时采用,它是将PC机的串口直接通过专用的配置连线与路由器控制台端口"Console"相连,在PC计算机上运行终端仿真软件(如Windows 系统下的超有终端),与路由器进行通信,完成路由器的配置。在物理连接上也可将PC的串口通过专用配置连线与路由器辅助端口AUX直接相连,进行路由器的配置。

  2. 远程登录(Telnet)方式

  这是通过操作系统自带的TELNET程序进行配置的(如Windows\Unix\Linux等系统都自带有这样一个远程访问程序)。如果路由器已有一些基本配置,至少要有一个有效的普通端口,就可通过运行远程登录(Telnet)程序的计算机作为路由器的虚拟终端与路由器建立通信,完成路由器的配置。

  3. 网管工作站方式

  路由器除了可以通过以上两种方式进行配置外,一般还提供一个网管工作站配置方式,它是通过SNMP网管工作站来进行的。这种方式是通过运行路由器厂家提供的网络管理软件来进行路由器的配置,如Cisco的CiscoWorks,也有一些是第三方的网管软件,如HP的OpenView等,这种方式一般是路由器都已经是在网络上的情况下,只不过想对路由器的配置进行修改时采用。

  4.TFTP服务器方式

  这是通过网络服务器中的TFTP服务器来进行配置的,TFTP(Trivial File Transfer Protocol)是一个TCP/IP简单文件传输协议,可将配置文件从路由器传送到TFTP服务器上,也可将配置文件从TFTP服务器传送到路由器上。TFTP不需要用户名和口令,使用非常简单。

  上面介绍了路由器的配置方式,但在这里要说明的是路由器的第一次配置必须是采用第一种方式,即通过连接在路由器的控制端口(Console)进行进行,此时终端的硬件设置为:波特率 :9600、数据位 :8 、停止位 :1、奇偶校验: 无。


  三、路由器配置的用户模式

  配置路由器有2种主要的方式:一种是手工配置,这种方式是进入到路由器的IOS后,通过命令行的方式进行路由器配置;另一种是运行路由器所带的配置软件中的"Setup.exe"程序,这是一个IOS提供的交互式配置软件,适用于对IOS命令不太熟悉的新用户。

  用户在认真学习IOS的配置命令后,采用手工方式对路由器进行配置可大大提高效率。IOS有多个级别的操作,在不同的级别上,使用的命令不同,能够进行的配置工作也不同。区分不同的级别时主要看路由器IOS的提示符号是什么,不同的操作级别对应有不同的提示符号。

  第1级:用户模式

  以终端或Telnet方式进入路由器时系统会提示用户输入口令,输入口令后便进入了第1级,即用户模式级别。此时,系统提示符为">"。如果路由器名称为cisco3640,则提示符为"cisco3640>"。在这一级别,用户只能查看路由器的一些基本状态,不能进行设置。

  第2级:特权模式

  在用户模式下先输入"enable",再输入相应的口令,进入第2级特权模式。特权模式的系统提示符是"#",如果路由器为cisco3640,则提示如下:

  Cisco3640>enable
  Password://////////////
  Cisco3640#

  在这一级别上,用户可以使用show和debug命令进行配置检查。这时还不能进行路由器配置的修改,如果要修改路由器配置,还必须进入第3级。

  第3级: 配置模式

  这种模式下,允许用户真正修改路由器的配置。进入第3级的方法是在特权模式中输入命令"config terminal",则相应提示符为"(config)#"。如下所示:

  Cisco3640#config terminal
  Cisco3640(config)#

  此时,用户才能真正修改路由器的配置,比如配置路由器的静态路由表,详细的配置命令需要参考路由器配置文档。如果想配置具体端口,还需要进入第4级。

  第4级: 端口配置模式

  路由器中有各种端口,如10/100Mbps以太网端口和同步端口等。要对这些端口进行配置,需要进入端口配置模式。比如,现在想对以太网端口0进行配置(路由器上的端口都有编号,请参考路由器随机文档),需要使用命令"interface ethernet0",如下所示:

  Cisco3640(config)# interface ethernet0
  Cisco3640(config-int)#

  上面我们说了我们主要是通过对路由器IOS的提示符对目前路由器的用户模式进行识别,为了方便大家的理解,现把路由器的几个基本命令提示符介绍给大家。
(1)router>

  路由器处于用户命令状态,这时用户可以看路由器的连接状态,访问其它网络和主机,但不能看到和更改路由器的设置内容。

  (2)router#

  在router>提示符下键入enable,路由器进入特权命令状态router#,这时不但可以执行所有的用户命令,还可以看到和更改路由器的设置内容。在特权模式键入exit,则退回用户模式。在特权模式下仍然不能进行配置,必须键入config terminal命令进入全局配配置模式才能实现对路由器的配置。

  (3)router(config)#

  在router#提示符下键入configure terminal,出现提示符router(config)#,此时路由器处于全局设置状态,这时可以设置路由器的全局参数。

  (4) router(config-if)#、router(config-line)#、router(config-router)#……

  路由器处于局部设置状态,这时可以设置路由器某个局部的参数。路由器上有许多接口,例如多个串行口,多个以太网口,具体对每一接口有许多参数要配置,这些配置不是一条命令能解决的,所以得进入某一接口或部件的局部配制模式。一旦进入某一接口或部件的局部配制模式,这时,键入的命令只对该接口有效,也只能键入该接口能接收的命令。例如进入串行接口1(简写S1),要对如下内容进行配制:第一,是同步还是异步;第二,波特率;第三,DCE还是DTE第四,IP地址是什么;第五,关闭还是打开;第六,使用什么协议。局部模式有许多种提示符,类似于"Router(config-if)#"。

  (5) 进入">"提示符状态

  路由器处于RXBOOT状态,在开机后60秒内按ctrl-break可进入此状态,这时路由器不能完成正常的功能,只能进行软件升级和手工引导。

  (6) 设置对话状态

  这是一台新路由器开机时自动进入的状态,在特权命令状态使用"Setup.exe"命令也可进入此状态,这时可通过对话方式对路由器进行设置。


  四、路由器的常用命令

  路由器的操作系统,它是一个功能非常强大的系统,特别是在一些高档的路由器中,它具有相当丰富的操作命令,就像我们的DOS系统一样。正确掌握这些命令对于配置路由器是最为关键的一步,否则根本无从谈起,因为一般来说都是以命令的方式对路由器进行配置的。下面我就仍以Cisco路由器为例讲一下路由器的常用操作命令。路由器的IOS操作命令较多,下面分类介绍。

  1. 帮助命令

  在IOS操作中,无论任何状态和位置,都可以通过键入"?"得到系统的帮助,所以说"?"就是路由器的帮助命令。

  2.改变设置状态的命令

  因为路由器有许多不同权限和选项的设置,所以也就必须有相应的命令来进入相应的设置状态,这些改变设置状态的命令如下表1所示。

  表1 路由器改变设置状态命令列表 任务
命令

进入特权命令状态
enable

退出特权命令状态
disable

进入设置对话状态
setup

进入全局设置状态
config terminal

退出全局设置状态
end

进入端口设置状态
interface type slot/number

进入子端口设置状态
interface type number . subinterface [point-to-point | multipoint]

进入线路设置状态
line type slot/number

进入路由设置状态
router protocol

退出局部设置状态
exit



  3.显示命令

  显示命令就是用于显示某些特定需要的命令,以方便用户查看某些特定设置信息。表2就是常见的信息显示命令。

  表2 信息显示命令列表 任务
命令

查看版本及引导信息
show version

查看运行设置
show running-config

查看开机设置
show startup-config

显示端口信息
show interface type slot/number

显示路由信息
show ip router



  因为路由器有时要进行网络管理,所以也必须具有一些网络进入命令,表3所示的就是这些有关网络进入和设置方面的命令。

  表3 网络命令列表 任务
命令

登录远程主机
Telnet hostname|IP address

网络侦测
ping hostname|IP address

路由跟踪
trace hostname|IP address



  4.基本命令

  除上面我们所说的一些特殊命令之外,更多的还是一些基本命令,如表4所示。

  表4 基本命令列表 任务
命令

全局设置
config terminal

设置访问用户及密码
username username password password

设置特权密码
enable secret password

设置路由器名
hostname name

设置静态路由
ip route destination subnet-mask next-hop

启动 IP 路由
ip routing

启动 IPX 路由
ipx routing

端口设置
interface type slot/number

设置 IP 地址
ip address address subnet-mask

设置 IPX 网络
ipx network network

激活端口
no shutdown

物理线路设置
line type number

启动登录进程
login [local|tacacs server]

设置登录密码
password password




  五、简单配置实例

  现在,我们以一个具体的示例来说明路由器的配置过程。目前,许多单位都以DDN专线方式接入Internet,在这种情况下,DDN专线通过一台NTU设备接到路由器的同步口,再通过一条双绞线,一端接路由器的以太网端口,另一端接内部网的网络交换机或Hub。一般只需选购具备一个同步口和一个以太口的路由器即可,现假设这台路由器是Cisco2611。对这样网络环境下的一台路由器配置过程我们可以简单地按如下方法进行。

  1.定义路由器机器名

  如果要将路由器机器名定义为cisco2611,进入路由器的IOS后,使用以下命令:

  router> enable
  password:////////////
  router# config terminal
  router(config)# hostname cisco2611

  2.设置特权模式密码

  我们在上一步的设备中可以看到,在对路由器操作时,输入"enable"后需输入相应的密码,那么这个密码是如何设置的呢?为了这个设置密码,应在配置模式中(也就是说是要第三级用户权限下,并不是在用户模式下)使用如下命令:

  router(config)# enable secret mypassword
  以便将密码改为mypassword。

  3.配置以太网端口信息

  在配置模式中输入以下命令:

  router(config)# interface ethernet 0/0
  router(config-if) # ip address 202.102.224.25 255.255.255.0

  第1条命令进入端口配置模式,第2条命令配置该端口的IP地址和子网掩码。需要指出的是,目前Cisco公司生产的路由器大多是基于模块化的,每个模块上可以有多个端口。比如一个具有2个以太网接口的网络模块,如果插在路由器槽位0上,则2个以太网端口就要用"ethernet 0/0"和"ethernet 0/1"来表示,在"/"符号的左边是模块的槽位号,右边是端口编号。

  4.配置同步端口

  router(config)# interface serial 0/0
  router(config-if)# ip address 202.102.211.108 255.255.255.248

  DDN专线一般接入路由器的同步口,用"serial 0/0"表示,其中"0/0"代表端口位置。使用上面第1条命令进入端口配置模式,使用上面第2条命令配置该端口的IP地址和子网掩码。

  5.添加静态路由表

  在这种Internet接入方式中,采用的是静态路由方式,因此需要将一条静态路由记录加入,内容如下:

  router(config)# ip router 0.0.0.0 0.0.0.0 202.102.211.107
  这条命令表示,将内部网段上发给路由器的包转发给DDN专线另一端的地址202.102.211.107。


  6.查看配置

  router# show running-config
  Building configuration...
  Current configuration:
  !
  version 12.0
  service config
  service timestamps debug uptime
  service timestamps log uptime
  service password-encryption
  !
  hostname cisco2611
  !
  enable secret 5 $1$MJrb$o3NCu6DPwG/TGFBT7xiLv/
  !
  ip subnet-zero
  ip domain-name pcworld.com.cn
  ip name-server 202.102.224.1
  !
  interface Ethernet0/0
  ip address 202.102.224.25 255.255.255.0
  !
  interface serial0/0
  ip address 202.102.211.108 255.255.255.248
  !
  ip classless
  ip default-network 0.0.0.0
  ip router 0.0.0.0 0.0.0.0 202.102.211.107
  no ip http server
  !
  line con 0
  exec-timeout 1 0
  password 7 061C0731
  login
  transport input none
  line aux 0
  line vty 0 4
  access-class 2 in
  password 7 131F1F02
  login
  !
  end

  上面列出的是路由器的当前配置,使用show running-config命令可以进行查看,若要查看存在NVRAM中的配置,需要使用show startup-config命令。

  7.保存配置

  当我们对路由器的配置进行修改之后,一定要将其存入NVRAM中才能在下一次启动时生效,为此,需要使用如下命令:

  router# copy running-config startup-config

  经过以上操作,路由器的配置工作基本完成。在路由器的不同操作级别上,都可以输入"?"符号来查看当前能够使用的命令有哪些。对于配置文件中不想要的语句,只需使用"no"命令,然后加上整条语句,即可删除。

  好了,路由器的简单配置方法就介绍至此,在下一篇中我们将结构实例介绍路由器高级配置中的一些具体应用配置,想要进一步了解路由器的高级配置读者一定要注意了,非常有用的!

网络学堂十九:路由器的硬件连接

  在了解了路由器的基础知识后,从本篇开始就要正式介入路由器的使用了。本篇所要介绍的就是使用前的基础工作——路由器的硬件连接。

  因为路由器属于一种用于网络之间互联的高档网络接入设备,因其连接的网络可能多种多样,所以其接口类型也就比较多。为此,在正式介绍路由器的连接方法之前我们有必要对路由器的一些基本接口进行认识。

  一、路由器接口

  路由器具有非常强大的网络连接和路由功能,它可以与各种各样的不同网络进行物理连接,这就决定了路由器的接口技术非常复杂,越是高档的路由器其接口种类也就越多。路由器既可以对不同局域网段进行连接,也要以对不同类型的广域网络进行连接,所以路由器的接口类型也就一般可以分为局域网接口和广域网接口两种。另外,因为路由器本身不带有输入和终端显示设备,但它需要进行必要的配置后才能正常使用,所以一般的路由器都带有一个控制端口"Console",用来与计算机或终端设备进行连接,通过特定的软件来进行路由器的配置。下面我们先就来看看路由器的局域网和广域网连接端口。

  1. 局域网接口

  根据其接口的名字我们可看出这些接口主要是用于路由器与局域网进行连接,因局域网类型也是多种多样的,所以这也就决定了路由器的局域网接口类型也可能是多样的。不同的网络有不同的接口类型,常见的以太网接口主要有AUI、BNC和RJ-45接口,还有FDDI、ATM、光纤接口,这些网络都有相应的网络接口,下面分别介绍主要的几种局域网接口。

  (1) AUI端口

  AUI端口是用来与粗同轴电缆连接的接口,它是一种"D"型15针接口,这在令牌环网或总线型网络中是一种比较常见的端口之一。路由器可通过粗同轴电缆收发器实现与10Base-5网络的连接,但更多的是借助于外接的收发转发器(AUI-to-RJ-45),实现与10Base-T以太网络的连接。当然也可借助于其他类型的收发转发器实现与细同轴电缆(10Base-2)或光缆(10Base-F)的连接。这里所讲的路由器AUI接口主要是用粗同轴电缆作为传输介质的网络进行连接用的,AUI接口示意图如图1所示。


图1


  (2)RJ-45端口


  RJ-45端口是我们最常见的端口了,它是我们常见的双绞线以太网端口,因为在快速以太网中也主要采用双绞线作为传输介质,所以根据端口的通信速率不同RJ-45端口又可分为10Base-T网RJ-45端口和100Base-TX网RJ-45端口两类。其中,10Base-T网的RJ-45 端口在路由器中通常是标识为"ETH",而100Base-TX 网的RJ-45端口则通常标识为"10/100bTX",这主要是现在快速成以太网路由器产品多数还是采用10Mbps/100Mbps带宽自适应的。如图2左图所示为10Base-T 网RJ-45端口,而右图所示的为10/100Base-TX网RJ-45端口。其实这两种RJ-45端口仅就端口本身而言是完全一样的,但端口中对应的网络电路结构是不同的,所以也不能随便接。


图2

  (3)SC端口

  SC端口也就是我们常说的光纤端口,它是用于与光纤的连接,一般来说这种光纤端口是不太可能直接用光纤连接至工作站,一般是通过光纤连接到快速以太网或千兆以太网等具有光纤端口的交换机。这种端口一般在高档路由器才具有,都以"100b FX"标注,如图3所示。


图3

  2. 广域网接口

  在上面就讲过,路由器不仅能实现局域网之间连接,更重要的应用还是在于局域网与广域网、广域网与广域网之间的互连。但因为广域网规模大,网络环境复杂,所以也就决定了路由器用于连接广域网的端口的速率要求非常高,在以太网中一般都要求在100Mbps快速以太网以上。下面介绍几种常见的广域网接口。
 (1)RJ-45端口

  利用RJ-45端口也可以建立广域网与局域网之间的VLAN之间,以及与远程网络或Internet的连接。如果使用路由器为不同VLAN提供路由时,可以直接利用双绞线连接至不同的VLAN端口。但要注意这里的RJ-45端口所连接的网络一般不太可是10Base-T,而是100Mbps快速以太网以上。如果必须通过光纤连接至远程网络,或连接的是其他类型的端口时,则需要借助于收发转发器才能实现彼此之间的连接。如图4所示为快速以太网(Fast Ethernet)端口。


图4

  (2)AUI端口

  AUI端口我们在局域网中也讲过,它是用于与粗同轴电缆连接的网络接口,其实AUI端口也被常用于与广域网的连接,但是这种接口类型在广域网应用得比较少。在Cisco 2600系列路由器上,提供了AUI与RJ-45两个广域网连接端口,用户可以根据自己的需要选择适当的类型,如图5所示。


图5

  (3)高速同步串口

  在路由器的广域网连接中,应用最多的端口还要算"高速同步串口"(SERIAL)了,这种端口主要是用于连接目前应用非常广泛的DDN、帧中继(Frame Relay)、X.25、PSTN(模拟电话线路)等网络连接模式。在企业网之间有时也通过DDN或X.25等广域网连接技术进行专线连接。这种同步端口一般要求速率非常高,因为一般来说通过这种端口所连接的网络的两端都要求实时同步。如图6所示为高速同步串口。


图6
 (4)异步串口

  异步串口(ASYNC)主要是应用于Modem或Modem池的连接,用于实现远程计算机通过公用电话网拨入网络。这种异步端口相对于上面介绍的同步端口来说在速率上要求宽松许多,因为它并不要求网络的两端保持实时同步,只要求能连续即可。所以我们在上网时所看到的并不一定就是网站上实时的内容,但这并不重要,因为毕竟这种延时是非常小的,重要的是在浏览网页时能够保持网页正常的下载。如图7所示为异步串口。


图7

  (5)ISDN BRI端口

  因ISDN这种互联网接入方式连接速度上有它独特的一面,所以在当时ISDN刚兴起时在互联网的连接方式上还得到了充分的应用。ISDN BRI端口用于ISDN线路通过路由器实现与Internet或其他远程网络的连接,可实现128Kbps的通信速率。ISDN有两种速率连接端口,一种是ISDN BRI(基本速率接口),另一种是ISDN PRI(基群速率接口),ISDN BRI端口是采用RJ-45标准,与ISDN NT1的连接使用RJ-45-to-RJ-45直通线。如图8所示为ISDN BRI端口。


图8

  3. 路由器配置接口

  路由器的配置端口其实有两个,分别是"Console"和"AUX","Console"通常是用来进行路由器的基本配置时通过专用连线与计算机连用的,而"AUX"是用于路由器的远程配置连接用的。

  (1)Console端口

  Console端口使用配置专用连线直接连接至计算机的串口,利用终端仿真程序(如Windows下的"超级终端")进行路由器本地配置。路由器的Console端口多为RJ-45端口。如图9就包含了一个Console配置端口。


图9

  (2)AUX端口

  AUX端口为异步端口,主要用于远程配置,也可用于拔号连接,还可通过收发器与MODEM进行连接。支持硬件流控制(Hardware Flow Control)。AUX端口与Console端口通常被放置在一起,因为它们各自所适用的配置环境不一样。仍参见上述图9。


  二、路由器的硬件连接

  路由器的应用非常广泛,它所具有的端口类型一般也是比较多的,它们用于各自不同的网络连接,如果不能明白各自端口的作用的话就很可能进行错误的连接,导致网络连接不正确,网络不通。下面我们通过对路由器的几种网络连接形式来进一步理解各端口的连接应用环境。路由器的硬件连接主要包括与局域网设备之间的连接、与广域网设备之间的连接以及与配置设备之间的连接。

  1. 路由器与局域网接入设备之间的连接

  局域网设备主要是指集线器与交换机,交换机通常使用的端口只有RJ-45和SC,而集线器使用的端口则通常为AUI、BNC和RJ-45。下面,我们简单介绍一下路由器和集线设备各种端口之间是如何进行连接。

  (1)RJ-45-to-RJ-45

  这种连接方式就是路由器所连接的两端都是RJ-45接口的,如果路由器和集线设备均提供RJ-45端口,那么,可以使用双绞线将集线设备和路由器的两个端口连接在一起。需要注意的是,与集线设备之间的连接不同,路由器和集线设备之间的连接不使用交叉线,而是使用直通线,也就是说,跳线两端的线序完全相同,但也不是说只要线序相同就行,对于100Mbps的网络来说就采用100Mbps交换法,具体参照本教程前面篇章介绍。再一个要注意的是集线器设备之间的级联通常是通过级联端口进行的,而路由器与集线器或交换机之间的互联是通过普通端口进行的。另外,路由器和集线设备端口通信速率应当尽量匹配,否则,宁可使集线设备的端口速率高于路由器的速率,并且最好将路由器直接连接至交换机。

  (2)AUI-to-RJ-45

  这种情况主要出现在路由器与集线器相连,如果路由器仅拥有AUI端口,而集线设备提供的是RJ-45端口,那么,必须借助于AUI-to-RJ-45收发器才可实现两者之间的连接。当然,收发器与集线设备之间的双绞线跳线也必须使用直通线,连接示意图如图10所示。


图10

  (3)SC-to-RJ-45或SC-to-AUI

  这种情况一般是路由器与交换机之间的连接,如交换机只拥有光纤端口,而路由设备提供的是RJ-45端口或AUI端口,那么必须借助于SC-to-RJ-45或SC-to-AUI收发器才可实现两者之间的连接。收发器与交换机设备之间的双绞线跳线同样必须使用直通线。但是实际上出现交换机为纯光纤接口的情况非常少见。
 2. 路由器与Internet接入设备的连接

  我们在上面就已经知道,路由器的更主要应用是与互联网的连接,这种情况在个、事业单位局域网互联网接入的情况下用得最多,而且是必不可少的一种设备。路由器与互联网接入设备的连接情况主要有以下几种:

  (1)通过异步串行口连接

  这种异步串口我们在前面已有介绍,它主要是用来与Modem设连接,用于实现远程计算机通过公用电话网拨入局域网络。除此之外,也可用于连接其他终端。当路由器通过电缆与Modem连接时,必须使用AYSNC-to-DB25或AYSNC-to-DB9适配器来连接。路由器与Modem或终端的连接如图11所示。


图11

  (2)同步串行口

  在路由器中所能支持的同步串行端口类型比较多,如Cisco系统就可以支持5种不同类型的接口,分别是:EIA/TIA-232接口、EIA/TIA-449接口、V.35接口、X.21串行电缆总成和EIA-530接口,所对应的适配器图示分别如图12、图13、图14、图15、图16所示。要注意的一点就是,一般来说适配器连线的两端是采用不同的外形(一般称带插针的一端称之为"公头",而带有孔的一端通常称之为"母头"),但也有例外,"EIA-530"接口两端都是一样的接口类型,这主要是考虑到连接的紧密性,参见图16。其余各类接口的"公头"为DTE(数据终端设备,Data Terminal Equipment)连接适配器,"母头"为DCE(数据通信设备,Data Communications Equipment)连接适配器。


图12


图13


图14


图15


图16

  如图17所示的为同步串行口与Internet接入设备连接的示意图,在连接时只需要对应看一下连接用线与设备端接口类型就可以知道正确选择了。

 


图17

  (3)ISDN BRI端口

  我们在前面已经介绍ISDN在互联网接入方面在也确实带来了一些可行的解决方案,所在路由器的开发设计中也特定为了与ISDN设备之间的连接准备了相应的模块,并预留了特殊的端口。Cisco路由器的ISDN BRI模块一般可分为两类,一是ISDN BRI S/T模块,二是ISDN BRI U模块,前者必须与ISDN 的NT1终端设备一起才能实现与Internet的连接,因为S/T端口只能接数字电话设备,不适用通过NT1连接现有的模拟电话设备了,连接图如图18所示。而后者由于内置有NT1模块,我们称之为"NT1+"终端设备,它的"U"端口可以直接连接模拟电话外线,因此,无需再外接ISDN NT1,可以直接连接至电话线墙板插座,如图19所示。


图18


图19

 

  3. 配置端口

  与前面讲的一样,路由器的配置端口依据配置的方式的不同,所采用的端口也不一样,主要仍有两种:一种是本地配置所采用的"Console"端口;另一种是远程配置时采用的"AUX"端口,下面分别讲一下各自的连接方式。

  (1)Console端口的连接方式

  当使用计算机配置路由器时,必须使用翻转线将路由器的Console口与计算机的串口/并口连接在一起,这种连接线一般来说需要特制,根据计算机端所使用的是串口还是并口,选择制作RJ-45-to-DB-9或RJ-45-to-DB-25转换用适配器,如图20所示。


图20

  (2)AUX端口的连接方式

  当需要通过远程访问的方式实现对路由器的配置时,就需要采用AUX端口进行了。AUX接口在外观上其实与上面所介绍的RJ-45结构一样,只是里面所对应的电路不同,实现的功能也不同而已。根据Modem所使用的端口情况不同,来确定通过AUX端口与Modem进行连接所也必须借助于RJ-45 to DB9或RJ-45 to DB25的收发器的选择。路由器的AUX端口与Modem的连接方式如图21所示。


图21

  好了,路由器的各种连接方法就介绍至此,下一篇将介绍路由器的配置。

网络学堂十八:主要路由器技术

  路由器我们知道是一个相当复杂的设备,它的复杂性并不在于它的硬件如何庞大,而在于它的软件技术相当复杂。目前全球能生产出中、高档路由器的也只有少数的那么几家,国内就更少了。为了对路由器技术有一个较全面的了解,本节就路由器技术的几个重要方面作如下介绍。

  一、主要路由协议

  路由协议是路由器软件中重要的组成部分。路由器的路由功能就是通过这些路由协议来实现的,路由协议的作用是用来建立以及维护路由表。路由表是记录一些转发数据到已知目的节点的最佳路径,有了它,只需直接按路径转发数据包即可,可大大提高数据转发的速度和效率。

  典型的路由选择方式有两种:静态路由和动态路由。静态路由是在路由器中设置的固定的路由表,除非网络管理员干预,否则静态路由不会发生变化。由于静态路由不能对网络的改变作出反映,一般用于网络规模不大、拓扑结构固定的网络中。静态路由的优点是简单、高效、可靠。在所有的路由中,静态路由优先级最高。当动态路由与静态路由发生冲突时,以静态路由为准。而动态路由是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。它能实时地适应网络结构的变化。如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。动态路由适用于网络规模大、网络拓扑复杂的网络。当然,各种动态路由协议会不同程度地占用网络带宽和CPU资源。

  静态路由和动态路由有各自的特点和适用范围,因此在网络中动态路由通常作为静态路由的补充。当一个分组在路由器中进行寻径时,路由器首先查找静态路由,如果查到则根据相应的静态路由转发分组;否则再查找动态路由。

  1. 路由协议种类

  根据是否在一个自治域(AS)内部使用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。这里的自治域指一个具有统一管理机构、统一路由策略的网络。自治域内部采用的路由选择协议称为内部网关协议,常用的有RIP、OSPF;外部网关协议主要用于多个自治域之间的路由选择,常用的是BGP和BGP-4。下面分别进行简要介绍。

  (1)RIP路由协议

  RIP协议最初是为Xerox网络系统的Xerox parc通用协议而设计的,是Internet中常用的路由协议。RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网。

  RIP使用非常广泛,它简单、可靠,便于配置,但RIP只适用于小型的同构网络,因为它允许的最大站点数为15,任何超过15个站点的目的地均被标记为不可达。而且RIP每隔30s一次的路由信息广播也是造成网络的广播风暴的重要原因之一。

  (2)OSPF路由协议

  80年代中期,RIP已不能适应大规模异构网络的互连,0SPF随之产生。它是网间工程任务组织(1ETF)的内部网关协议工作组为IP网络而开发的一种路由协议。

  0SPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。利用0SPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。与RIP不同,OSPF将一个自治域再划分为区,相应地即有两种类型的路由选择方式:当源和目的地在同一区时,采用区内路由选择;当源和目的地在不同区时,则采用区间路由选择。这就大大减少了网络开销,并增加了网络的稳定性。当一个区内的路由器出了故障时并不影响自治域内其它区路由器的正常工作,这也给网络的管理、维护带来方便。

  (3)BGP和BGP-4路由协议

  BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其它自治域的BGP交换网络可达信息。各个自治域可以运行不同的内部网关协议。BGP更新信息包括网络号/自治域路径的成对信息。自治域路径包括到达某个特定网络须经过的自治域串,这些更新信息通过TCP传送出去,以保证传输的可靠性。

  为了满足Internet日益扩大的需要,BGP还在不断地发展。在最新的BGp4中,还可以将相似路由合并为一条路由。

  在一个路由器中,可同时配置静态路由和一种或多种动态路由,它们各自维护的路由表都提供给转发程序。但这些路由表的表项间可能会发生冲突,这种冲突可通过配置各路由表的优先级来解决。通常静态路由具有默认的最高优先级,当其它路由表表项与它矛盾时,均按静态路由转发。

 2. 路由算法

  路由算法在路由协议中起着至关重要的作用,采用何种算法往往决定了最终的寻径结果,因此选择路由算法一定要仔细。通常需要综合考虑以下几个设计目标:

  (1)最优化:指路由算法选择最佳路径的能力。

  (2)简洁性:算法设计简洁,利用最少的软件和开销,提供最有效的功能。

  (3)坚固性:路由算法处于非正常或不可预料的环境时,如硬件故障、负载过高或操作失误时,都能正确运行。由于路由器分布在网络联接点上,所以在它们出故障时会产生严重后果。最好的路由器算法通常能经受时间的考验,并在各种网络环境下被证实是可靠的。

  (4)快速收敛:收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。

  (5)灵活性:路由算法可以快速、准确地适应各种网络环境。例如,某个网段发生故障,路由算法要能很快发现故障,并为使用该网段的所有路由选择另一条最佳路径。

  二、主要路由器技术

  路由器技术是融合现代通信技术、计算机技术、网络技术、微电子芯片技术、大规模集成电路技术,光电子技术及光通信技术的核心技术,是衡量一个国家科学技术水平的重要标志。 IP路由技术主要体现在以下几方面:

  1. 硬件体系结构

  高速IP路由器通常借鉴ATM方法,采用交叉开关方式实现各端口之间的线速 无阻塞互连。高速交叉开关技术已经十分成熟,在ATM交换机和高速交行计算机中广泛应用,市场上可直接买到高速交叉开关速率就高达50Gbps的设备。

  2. ASIC技术

  由于厂商需要降低成本,ASIC技术在路由器中得到了越来越广泛的应用。在路由 器中,要极大地提高速度,首先想到的是ASIC,有的用ASIC做包转发,有的用ASIC查 路由,并且已经有专门用来查找IPv4路由的ASIC芯片商用。一般来说,ASIC只用于已 完全标准化的处理,而网络的结构和协议变化频繁,因此相应地在网络设备这一领域 ,出现了"可编程ASIC"。目前,有两种类型的"可编程ASIC",一种以3Com公司为 主的FIRE(Flexible Intelligent Routing Engine)芯片为代表。另一种以Vertex Networks的HISC专用芯片为代表,这颗芯片是一颗专门为通信协议处理而设计的CPU, 通过改写微码,可使这颗专用芯片具有同协议的能力。

  3. 三层交换

  自从 Ipsilon在1994年推出一次路由再交换IP Switching技术之后,各大公司纷纷推出了 各自专有的三层交换技术,在综合所有三层交换技术优势之后,IETF终于在1998年推 出了性能优越的多协议标记交换(MPLS)。与"一次路由再交换"技术相比,MPLS多 网络结构这一更高层次来考虑三层交换技术,力图一举解决三层交换网络流量管理问 题,目前这一技术的研究仍在进行中。


 以上所介绍的是路由器硬件方面所采取的技术,在软件方面同样具有许多先进技术,具体如下:

  1. VPN技术

  VPN的英文全称就是"Virtual Private Network",中文名为"虚拟专用网",它是路由器具有的重要技术之一。VPN是指在公用网络上建立虚拟私有网,可以从不同的角度对VPN进行分类:

  (1)按接入方式划分:VPN可以分为"专线VPN"和"拨号VPN"以下两类,专线VPN是为已经通过专线接入ISP边缘路由器的用户提供的VPN实现方案。拨号VPN(又称VPDN)是指为利用拨号PSTN或ISDN接入 ISP的用户提供的VPN业务。

  (2)按协议类型划分:VPN又可以分为"第二层隧道协议"和"第三层隧道协议"两类。第二层隧道协议包括:点到点隧道协议(PPTP)、第二层转发协议(L2F)、第二层隧道协议(L2TP)。 而第三层隧道协议包括:通用路由封装协议(GRE)、IP安全(IPSec)协议。MPLS隧道协议可以看成在第二层和第三层之间。

  (3)按VPN的发起方式划分:VPN可分为"客户发起VPN"和"服务器发起VPN"两种,客户发起(也称基于客户的)它是VPN服务提供的起始点和终止点是面向客户的,其内部技术构成、实施和管理对VPN客户可见。而服务器发起(也称客户透明方式或基于网络的)是在公司中心部门和ISP处(称为POP)安装VPN软件,客户无须安装任何特殊软件。

  (4)按目前运营商所开展的类型划分:VPN可分为"拨号VPN"和"虚拟租用线"两类。拨号VPN业务(VPDN)就是第一种划分方式中的VPDN。虚拟租用线(VLL):是对传统的租用线业务的仿真,以IP网络对租用线进行模拟,而这样一条虚拟租用线两端的用户看来,该虚拟租用线等价于过去的租用线。

  虚拟专用路由网(VPRN)业务包括两类:一是使用传统的VPN协议,如 IPSec、GRE等实现的VPRN。另外一种是MPLS方式的VPN。路由器的VPN技术解决方案措施主要有以下几种:

  (1)访问控制的设定

  路由器的访问控制的设定一般是通过PAP(口令认证协议)和CHAP(高级口令认证协议)两种协议来实现的。PAP要求登录者向目标路由器提供用户名和口令,与其访问列表(Access List)中的信息相符才允许其登录。它虽然提供了一定的安全保障,但用户登录信息在网上无加密传递,易被人窃取。CHAP便应运而生,它把一随机初始值与用户原始登录信息(用户名和口令)经Hash算法翻译后形成新的登录信息。这样在网上传递的用户登录信息对黑客来说是不透明的,且由于随机初始值每次不同,用户每次的最终登录信息也会不同,即使某一次用户登录信息被窃取,黑客也不能重复使用。需要注意的是,由于各厂商采取各自不同的Hash算法,所以CHAP无互操作性可言。要建立VPN需要VPN两端放置相同品牌路由器。  
 
  (2)通信数据加密

  我们知道数据加密过程中加密位数是一个很重要的参数,它直接关系到解密的难易程度,所以路由器所采用的数据加密技术在加密位数方面非常注重,如其中Intel 9000系列路由器表现最为优异,为一百多位加密,一般都有56位或64位。
  
  (3)NAT技术

  NAT的英文全称为"Network Address Translation",中文名就叫做"网络地址转换协议"。如同用户登录信息一样,IP和MAC地址在网上无加密传递也很不安全。NAT可把合法IP地址和MAC地址翻译成非法IP地址和MAC地址在网上传递,到达目标路由器后反翻译成合法IP与MAC地址,翻译算法厂商各自有不同标准,不能实现互操作。


 2. QoS技术

  QoS的英文全称为"Quality of Service",中文名为"服务质量"。QoS原来只是在ATM(Asynchronous Transmit Mode)中专用,但利用IP传VOD等多媒体信息的应用越来越多,IP作为一个打包的协议显得有点力不从心。主要体现在:延迟长且不为定值,丢包造成信号不连续且失真大。为解决这些问题,厂商提供了若干解决方案:第一种方案是基于不同对象的优先级,某些设备(多为多媒体应用)发送的数据包可以后到先传。第二种方案基于协议的优先级,用户可定义哪种协议优先级高,可后到先传,Intel和Cisco都支持。第三种方案是做链路整合MLPPP(Multi Link Point to Point Protocol),Cisco支持可通过将连接两点的多条线路做带宽汇聚,从而提高带宽。第四种方案是做资源预留RSVP(Resource Reservation Protocol),它将一部分带宽固定的分给多媒体信号,其它协议无论如何拥挤,也不得占用这部分带宽。这几种解决方案都能有效的提高传输质量。

  路由器上的QoS可以通过下面几种手段获得:

  ·通过大带宽得到

  在路由器上除增加接口带宽以外不作任何额外工作来保障QoS。由于数据通信没有相应公认的数学模型作保障,该方法只能粗略地使用经验值作估计。通常认为当带宽利用率到达50%以后就应当扩容,保证接口带宽利用率小于50%。

  ·通过端到端带宽预留实现

  该方法通过使用RSVP或者类似协议在全网范围内通信的节点间端到端预留带宽。该方法能保证QoS,但是代价太高,通常只在企业网或者私网上运行,在大网公网上无法实现。

  ·通过接入控制、拥塞控制和区分服务等方式得到

  该方式无法完全保证QoS。这能与增加接口带宽等方式结合使用,在一定程度上提供相对的CoS。

  ·通过MPLS流量工程得到。

  3. Ipv6技术

  迅速发展中的互联网将不再是仅仅连接计算机的网络,它将发展成能同电话网、有线电视网类似的信息通信基础设施。因此,正在使用的IP(互联网协议)已经难以胜任,人们迫切希望下一代 IP即IPv6的出现。   

  IPv6是IP的一种版本,在互联网通信协议TCP/IP中,是OSI模型第3层(网络层)的传输协议。它同目前广泛使用的、1974年便提出的IPv4相比,地址由32位扩充到128位。从理论上说,地址的数量由原先的4.3×109个增加到4.3×1038个。

  4. 路由器队列管理机制

  由于路由器是基于分组交换的设备,在每个端口上带宽统计复用,所以路由器必须在端口上维护一个或多个队列,否则路由器无法处理多个数据包同时向同一端口转发以及端口上QoS能力等问题。队列管理算法的好坏直接影响路由器性能、QoS能力以及拥塞管理能力。通常队列管理算法分为基于时标算法、基于轮转算法以及基于优先级队列等。

  下一篇将介绍路由器硬件的安装与连接,这是非常重要一部分。

网络学堂十七:路由器原理、分类和选购

  上一篇我们已对路由器的基础方面有一个全面的了解,本篇要继续介绍路由器的其它几个方面。首先要介绍的是路由器的工作原理,只有在充分理解了路由器工作原理基础上,才能正确理解路由器的主要作用。

  一、路由器的工作原理

  我们知道路由器是用来连接不同网段或网络的,在一个局域网中,如果不需与外界网络进行通信的话,内部网络的各工作站都能识别其它各节点,完全可以通过交换机就可以实现目的发送,根本用不上路由器来记忆局域网的各节点MAC地址。路由器识别不同网络的方法是通过识别不同网络的网络ID号进行的,所以为了保证路由成功,每个网络都必须有一个唯一的网络编号。路由器要识别另一个网络,首先要识别的就是对方网络的路由器IP地址的网络ID,看是不是与目的节点地址中的网络ID号相一致。如果是当然就向这个网络的路由器发送了,接收网络的路由器在接收到源网络发来的报文后,根据报文中所包括的目的节点IP地址中的主机ID号来识别是发给哪一个节点的,然后再直接发送。

  为了更清楚地说明路由器的工作原理,现在我们假设有这样一个简单的网络。假设其中一个网段网络ID号为"A",在同一网段中有4台终端设备连接在一起,这个网段的每个设备的IP地址分别假设为:A1、A2、A3和A4。连接在这个网段上的一台路由器是用来连接其它网段的,路由器连接于A网段的那个端口IP地址为A5。同样路由器连接另一网段为B网段,这个网段的网络ID号为"B",那连接在B网段的另几台工作站设备设的IP地址我们设为:B1、B2、B3、B4,同样连接与B网段的路由器端口的IP地址我们设为B5,结构如图1所示。


图1

  在这样一个简单的网络中同时存在着两个不同的网段,现如果A网段中的A1用户想发送一个数据给B网段的B2用户,有了路由器就非常简单了。


  首先A1用户把所发送的数据及发送报文准备好,以数据帧的形式通过集线器或交换机广播发给同一网段的所有节点(集线器都是采取广播方式,而交换机因为不能识别这个地址,也采取广播方式),路由器在侦听到A1发送的数据帧后,分析目的节点的IP地址信息(路由器在得到数据包后总是要先进行分析)。得知不是本网段的,就把数据帧接收下来,进一步根据其路由表分析得知接收节点的网络ID号与B5端口的网络ID号相同,这时路由器的A5端口就直接把数据帧发给路由器B5端口。B5端口再根据数据帧中的目的节点IP地址信息中的主机ID号来确定最终目的节点为B2,然后再发送数据到节点B2。这样一个完整的数据帧的路由转发过程就完成了,数据也正确、顺利地到达目的节点。

  当然实际上像以上这样的网络算是非常简单的,路由器的功能还不能从根本上体现出来,一般一个网络都会同时连接其它多个网段或网络,就像图2所示的一样,A、B、C、D四个网络通过路由器连接在一起。


图2

  现在我们来看一下在如图2所示网络环境下路由器又是如何发挥其路由、数据转发作用的。我们同样需要假设,各网络用户的IP地址分配就不多讲了,图2已有标注。现假设网络A中一个用户A1要向C网络中的C3用户发送一个请求信号时,信号传递的步骤如下:

  第1步:用户A1将目的用户C3的地址C3,连同数据信息以数据帧的形式通过集线器或交换机以广播的形式发送给同一网络中的所有节点,当路由器A5端口侦听到这个地址后,分析得知所发目的节点不是本网段的,需要路由转发,就把数据帧接收下来。

  第2步:路由器A5端口接收到用户A1的数据帧后,先从报头中取出目的用户C3的IP地址,并根据路由表计算出发往用户C3的最佳路径。因为从分析得知到C3的网络ID号与路由器的C5网络ID号相同,所以由路由器的A5端口直接发向路由器的C5端口应是信号传递的最佳途经。

  第3步:路由器的C5端口再次取出目的用户C3的IP地址,找出C3的IP地址中的主机ID号,如果在网络中有交换机则可先发给交换机,由交换机根据MAC地址表找出具体的网络节点位置;如果没有交换机设备则根据其IP地址中的主机ID直接把数据帧发送给用户C3,这样一个完整的数据通信转发过程也完成了。

  从上面可以看出,不管网络有多么复杂,路由器其实所作的工作就是这么几步,所以整个路由器的工作原理都差不多。当然在实际的网络中还远比上图2所示的要复杂许多,实际的步骤也不会像上述那么简单,但总的过程是这样的。
 二、路由器的分类

  路由器发展到今天,为了满足各种应用需求,也出现过各式各样的路由器。下面我们就简单地来对整个路由器市场作一个综合分类。

  1. 按性能档次分

  任何商品都好像有一个默认的划分标准,那就大家通常所说的高、中、低档。路由器也一样可分高、中和低档路由器,不过各厂家划分并不完全一致。通常将背板交换能力大于40Gbps的路由器称为高档路由器,背板交换能力在25Gbps~40Gbps之间的路由器称为中档路由器,低于25Gbps的当然就是低档路由器了。当然这只是一种宏观上的划分标准,实际上路由器档次的划分不仅是背板带宽为依据的,是有一个综合指标的。以市场占有率最大的Cisco公司为例,12000系列为高端路由器,7500以下系列路由器为中低端路由器。图3的左、中、右图分别为Cisco的高、中、低三种档次的路由器产品示意图。


图3



  2. 按结构分

  从结构上分,路由器可分为模块化结构与非模块化结构。模块化结构可以灵活地配置路由器,以适应企业不断增加的业务需求,非模块化的就只能提供固定的端口。通常中高端路由器为模块化结构,低端路由器为非模块化结构。图4所示的左、右图分别为非模块化结构和模块化结构路由器产品示意图。


图4


 3. 从功能上划分

  从功能上划分,可将路由器分为核心层(骨干级)路由器,分发层(企业级)路由器和访问层(接入级)路由器。

  ·骨干级路由器:骨干级路由器是实现企业级网络互连的关键设备,它数据吞坦量较大,非常重要。对骨干级路由器的基本性能要求是高速度和高可靠性。为了获得高可靠性,网络系统普遍采用诸如热备份、双电源、双数据通路等传统冗余技术,从而使得骨干路由器的可靠性一般不成问题。骨干级路由器的瓶在转发表中查找某个路由器中,常将一些访问频率较高的目的端口放到Cache中,从而达到提高路由查找效率的目的。

  ·企业级路由器:企业或校园级路由器连接许多终端系统,连接对象较多,但系统相对简单,且数据流量较小,对这类路由器的要求是以尽量便宜的方法实现尽可能多的端点互连,同时还要求能够支持不同的服务质量。路由器连接的网络系统因能够将机器分成多个碰撞域,所以可以方便的控制一个网络的大小。此外,路由器还可以支持一定的服务等级,至少允许将网络分成多个优先级别。当然,路由器的每端口造价要贵些,在使用之前要求用户进行大量的配置工作。因此,企业级路由器的成败就在于是否可提供大量端口且每端口造价很低,是否容易配置,是否支持QoS,是否支持广播和组播等多项功能。

  ·接入级路由器:接入级路由器主要应用于连接家庭或ISP内的小型企业客户群体。 接入路由器在不久的将来不得不支持许多异构和高速端口,并能在各个端口运行多种协议。

  5. 从应用划分

  从功能上划分,路由器可分为通用路由器与专用路由器。一般所说的路由器皆为通用路由器。专用路由器通常为实现某种特定功能对路由器接口、硬件等作专门优化。例如接入服务器用作接入拨号用户,增强PSTN接口以及信令能力;VPN路由器用于为远程VPN访问用户提供路由,它需要在隧道处理能力以及硬件加密等方面具备特定的能力;宽带接入路由器则强调接口带宽及种类。

  6. 按所处网络位置划分

  如果按路由器所处的网络位置划分,则通常把路由器划分为"边界路由器"和"中间节点路由器"两类。很明显"边界路由器"是处于网络边缘,用于不同网络路由器的连接;而"中间节点路由器"则处于网络的中间,通常用于连接不同网络,起到一个数据转发的桥梁作用。由于各自所处的网络位置有所不同,其主要性能也就有相应的侧重,如中间节点路由器因为要面对各种各样的网络。如何识别这些网络中的各节点呢?靠的就是这些中间节点路由器的MAC地址记忆功能。基于上述原因,选择中间节点路由器时就需要在MAC地址记忆功能更加注重,也就是要求选择缓存更大,MAC地址记忆能力较强的路由器。但是边界路由器由于它可能要同时接受来自许多不同网络路由器发来的数据,所以这就要求这种边界路由器的背板带宽要足够宽,当然这也要与边界路由器所处的网络环境而定。虽然这两种路由器在性能上各有侧重,但所发挥的作用却是一样的,都是起到网络路由、数据转发功能。

  7. 从性能上划分

  从性能上分,路由器可分为线速路由器以及非线速路由器。所谓"线速路由器"就是完全可以按传输介质带宽进行通畅传输,基本上没有间断和延时。通常线速路由器是高端路由器,具有非常高的端口带宽和数据转发能力,能以媒体速率转发数据包;中低端路由器是非线速路由器。但是一些新的宽带接入路由器也有线速转发能力。


  三、路由器的选购

  路由器因为它的价格昂贵,且配置复杂,所以绝大多数用户对路由器的选购显得非常茫然,大多数系统管理员都对此也是一无所知。为此我在此就路由器的选购方面作一个简单的说明,希望对那些朋友有所帮助。路由器的选购主要从以下几个方面加以考虑:

  1、路由器的管理方式

  路由器最基本的管理方式是利用终端(如Windows 系统所提供的超级终端)通过专用配置线连接到路由器的"Console"端口(配置端口)直接进行配置。因为新购买的由器配置文件是空的,所以用户购买路由器以后一般都是先使用此方式对路由器进行基本的配置(具体方法参照前面的介绍)。但仅仅通过这种配置方法还不能对路由器进行全面的配置,以实现路由器的管理功能,我们只有在基本的配置完成后再进行有针对性的项目配置(如通信协议、路由协议配置等),这样我们才可以更加全面地实现路由器的网络管理功能。还有一种情况,就是有时我们可能需要改变路由器的许多设置,而自己并不在路由器旁边,无法连接专用配置线,这时就需要路由器提供远程Telnet程序进行远程访问配置,或者MODEM拨号来进行远程登录配置,还可以通过Web的方式来实现路由器的远程配置。现在一般的路由器都可能具有一种或几种这种远程配置管理方式。

  2、路由器所支持的路由协议

  因为路由器所连接的网络可能存在根本不同类型的网络,这些网络所支持的网络通信、路由协议也就有可能不一样,这时对于在网络之间起到连接桥梁作用的路由器来说,如果不支持一方的协议,那就无法实现它在网络之间的路由功能,为此在选购路由器时也就要注意所选路由器所能支持的网络路由协议有哪些,特别是在广域网中的路由器。因为广域网路由协议非常多,网络也是相当复杂,如目前电信局提供的广域网线路主要有X.25、帧中继、DDN等多种。但是作为用于局域网之间的路由器来说相对就较为简单些,因此选购的路由器要考虑路由器目前及将来的企业实际需求,来决定所选路由器要支持何种协议。

  3、路由器的安全性保障

  现在网络安全也是越来越受到用户的高度重视了,无论是个人还是单位用户,而路由器作为个、事业单位内部网和外部进行连接的设备,能否提供高要求的安全保障就极其重要了。目前许多厂家的路由器可以设置访问权限列表,达到控制哪些数据才可以进出路由器,实现防火墙的功能,防止非法用户的入侵。另外一个就是路由器的NAT(网络地址转换)功能,使用路由器的这种功能,就能够屏蔽公司内部局域网的网络地址,利用地址转换功统一转换成电信局提供的广域网地址,这样网络上的外部用户就无法了解到公司内部网的网络地址,进一步防止了非法的用户入侵稳定性。


  4、丢包率

  路由器作为数据转发的网络设备就存在一个丢包率的概念。丢包率就是在一定的数据流量下路由器不能正确进行数据转发的数据包在总的数据包中所占的比例。丢包率的大小会影响到路由器线路的实际工作速度,严重时甚至会使线路中断。小型企业一般来说网络流量不会很大,所以出现丢包现象的机会也很小,在此方面小型企业不必作太多考虑,而且一般来说路由器在此方面都还是可以接受的。

  5、背板能力

  背板能力通常是指路由器背板容量或者总线带宽能力,这个性能对于保证整个网络之间的连接速度是非常重要的。如果所连接的两个网络速率都较快,而由于路由器的带宽限制,这将直接影响了整个网络之间的通信速度。所以一般来说如果是连接两个较大的网络,网络流量较大时应格外注意一下路由器的背板容量,但是如果在小型企业网之间一般来说这个参数也是不用特别在意的,因为一般来说路由器在这方面都能满足小型企业网之间的通信带宽要求。

  6、吞吐量

  路由器的吞吐量是指路由器对数据包的转发能力,如较高档的路由器可以对较大的数据包进行正确快速转发;而较低档的路由器则只能转发小的数据包,对于较大的数据包需要拆分成许多小的数据包来分开转发,这种路由器的数据包转发能力就差了,其实这与上面所讲的背板容量是有非常紧密的关系的。

  7、转发时延

  指需转发的数据包最后一比特进入路由器端口到该数据包第一比特出现在端口链路上的时间间隔,这与上面的背板容量、吞吐量参数也是紧密相关的。

  8、路由表容量

  路由表容量是指路由器运行中可以容纳的路由数量。一般来说越是高档的路由器路由表容量越大,因为它可能要面对非常庞大的网络。这一参数是受路由器自身所带的缓存大小有关,一般的路由器也不需太注重这一参数,因为一般来说都能满足网络需求。

  9、可靠性

  可靠性是指路由器的可用性、无故障工作时间和故障恢复时间等指标,当然这一指标只能凭开发商自己吹了,新买的路由器暂时无法验证。不过这可以从选购信誉较好、技术先进的品牌作保障。

  下一篇将介绍路由器的主要技术。

网络学堂十六:路由器基础

在前几篇中我们已对局域网中主要网络设备——交换机作了比较全面的介绍,通过对交换机的学习,我们已经可以为自己的企业组建内部网了。但是如果企业网络还要与其它网络进行连接的话,还必须依靠一个为本企业网络指明连接方向的设备,那就是从本篇开始即将要介绍的另一重要网络设备——路由器了。
  一、路由器概述

  路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读懂”对方的数据,从而构成一个更大的网络。它与前面所介绍的集线器和交换机不同,它不是应用于同一网段的设备,而是应用于不同网段或不同网络之间的设备,属网际设备。路由器之所以能在不同网络之间起到“翻译”的作用,是因为它不再是一个纯硬件设备,而是具有相当丰富路由协议的软、硬结构设备,如RIP协议、OSPF协议、EIGRP、IPV6协议等。这些路由协议就是用来实现不同网段或网络之间的相互“理解”。

  路由器有两大典型功能,即数据通道功能和控制功能。数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。

  路由器具有判断网络地址和选择路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网。路由器只接受源站或其他路由器的信息,属网络层的一种互联设备,它不关心各子网使用的硬件设备,但要求运行与网络层协议相一致的软件。路由器分本地路由器和远程路由器,本地路由器是直接通过诸如光纤、同轴电缆、双绞线等传输介质连接的;远程路由器是不是通过以上传输介质直接连接的,而是通过其它网络,如电话网、有线电视网等进行远程连接的。 

  在局域网接入广域网的众多方式中,通过路由器接入互联网是最为普遍的方式。使用路由器互联网络的最大优点是:各互联子网仍保持各自独立,每个子网可以采用不同的拓扑结构、传输介质和网络协议,网络结构层次分明,还有的路由器具有VLAN管理功能。通过路由器与互联网相连,则可完全屏蔽公司内部网络,起到一个防火墙的作用,因此使用路由器上网还可确保内部网的安全。


  【注】路由器这类网络设备尽管自身具有许多软件性质的协议和OS系统,但从总体上来说它仍属于硬件设备,自身是不怕攻击的(集线器与交换机等网络设备也一样不怕攻击)。另外,路由器具有独立的公网IP地址,当局域网通过路由器接入互联网后,在互联网上显示的只是路由器的公网IP地址,而局域网用户所采用的是局域网IP地址,不属同一网络,所以起到保护作用。

  从本质上说,路由器也是一台计算机,其操作系统是在计算机引导时从ROM中装入内存的。随着Internet和企业网络的不断普及,路由器这种网络设备也被大量地采用。目前,市场上的路由器品牌很多,其中Cisco(思科)路由器在路由器技术方面最为权威,从某种意义上来说它是路由器的代名字,所以人们一讲到路由器这个名字就会想到Cisco这个名字。Cisco的路由器不仅产品线非常齐全(低端有Cisco 1600/1700系列,中端有Cisco 2500/2600/3600系列,高端有Cisco 7200/12000系列等),而且其技术也是最先进的,引导着整个市场。不过我国的华为,经过十多年的发展,也已非常强大,在一定程度上它几乎成为了Cisco公司最具有竞争力的公司之一,为了抑制我国华为公司发展,前不久还在与华为公司打侵权官司。 

  新购买路由器的配置文件是空的,管理人员必须编辑路由器的配置文件,并将其写入路由器的NVRAM(属于一种内存)。这样,路由器在下次启动时会根据配置文件来进行相应操作。

  路由器的主要工作就是为经过路由器的每个数据帧寻找一条最佳传输路径,并将该数据有效地传送到目的站点。由此可见,选择最佳路径的策略即路由算法是路由器的关键所在。为了完成这项工作,在路由器中保存着各种传输路径的相关数据--路径表(Routing Table),供路由选择时使用。路径表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路径表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。在路由器中涉及到两个有关地址的名字概念,那就是:静态路径表和动态路径表。由系统管理员事先设置好固定的路由表称之为静态(static)路由表,一般是在系统安装时就根据网络的配置情况预先设定的,它不会随未来网络结构的改变而改变。动态(Dynamic)路由表是路由器根据网络系统的运行情况而自动调整的路由表。路由器根据路由选择协议(Routing Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。
 二、路由器的主要功能

  路由器的主要功能就是“路由”的作用,通俗地讲就是“向导”作用,主要用来为数据包转发指明一个方向的作用。但如要细分的话,路由器的“路由”功能可以细分为如以下几个方面:

  (1)。在网际间接收节点发来的数据包,然后根据数据包中的源地址和目的地址,对照自己缓存中的路由表,把数据包直接转发到目的节点,这主要是我在上面所讲的路由器的最主要,也是最基本的路由作用。

  (2)为网际间通信选择最合理的路由,这个功能其实是上述路由功能的一个扩展功能。如果有几个网络通过各自的路由器连在一起,一个网络中的用户要向另一个网络的用户发出访问请求的话,路由器就会分析发出请求的源地址和接收请求的目的节点地址中的网络ID号,找出一条最佳的、最经济、最快捷的一条通信路径。就像我们平时到了一个陌生的地方,不知道到目的地点的最佳走法,这时我们就得找一个向导,这个向导就会告诉我们这个最佳的捷径,因为他熟悉各条的走法,这里所讲的路由器就相当于这里的“向导”。

  (3)拆分和包装数据包,这个功能也是路由功能的附属功能。因为有时在数据包转发过程中,由于网络带宽等因素,数据包过大的话,很容易造成网络堵塞,这时路由器就要把大的数据包根据对方网络带宽的状况拆分成小的数据包,到了目的网络的路由器后,目的网络的路由器就会再把拆分的数据包装成一个原来大小的数据包,再根据源网络路由器的转发信息获取目的节点的MAC地址,发给本地网络的节点。

  (4)不同协议网络之间的连接。目前多数中、高档的路由器往往具有多通信协议支持的功能,这样就可以起到连接两个不同通信协议网络的作用。如常用Windows NT 操作平台所使用的通信协议主要是TCP/IP协议,但是如果是NetWare系统,则所采用的通信协议主要是IPX/SPX协议,还有一些特殊协议网段,这些都需要靠支持这些协议的路由器来连接。

  (5) 目前许多路由器都具有防火墙功能(可配置独立IP地址的网管型路由器),它能够起到基本的防火墙功能,也就是它能够屏蔽内部网络的IP地址,自由设定IP地址、通信端口过滤,使网络更加安全。


  三、路由器和交换机的区别

  路由器是产生于交换机之后,就像交换机产生于集线器之后,所以路由器与交换机也有一定联系,并不是完全独立的两种设备。路由器主要克服了交换机不能路由转发数据包的不足。总的来说,路由器与交换机的主要区别体现在以下几个方面:

  (1)工作层次不同

  最初的交换机是工作在OSI/RM开放体系结构的数据链路层,也就是第二层,而路由器一开始就设计工作在OSI模型的网络层。由于交换机工作在OSI的第二层(数据链路层),所以它的工作原理比较简单,而路由器工作在OSI的第三层(网络层),可以得到更多的协议信息,路由器可以做出更加智能的转发决策。

  (2)数据转发所依据的对象不同

  交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。IP地址是在软件中实现的,描述的是设备所在的网络,有时这些第三层的地址也称为协议地址或者网络地址。MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经固化到了网卡中去,一般来说是不可更改的。而IP地址则通常由网络管理员或系统自动分配。

  (3)传统的交换机只能分割冲突域,不能分割广播域;而路由器可以分割广播域。由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传播,在某些情况下会导致通信拥挤和安全漏洞。连接到路由器上的网段会被分配成不同的广播域,广播数据不会穿过路由器。

  虽然第三层以上交换机具有VLAN功能,也可以分割广播域,但是各子广播域之间是不能通信交流的,它们之间的交流仍然需要路由器。

  (4)路由器提供了防火墙的服务,它仅仅转发特定地址的数据包,不传送不支持路由协议的数据包传送和未知目标网络数据包的传送,从而可以防止广播风暴。


  四、路由器的发展过程及趋势

  虽然路由器本质上还是一台特殊的专门执行协议处理的计算机,但从功能上看,路由器与计算机还是有较大的区别。这种区别虽然大多在低档路由器或在路由器的初期发展阶段表现得并不突出,但到了网络系统的规模、速度、种类、应用都已发生巨大变化的今天,这些网络系统本身的变化当然要导致作为网络核心的路由器的体系结构发生巨大变化。
 
  目前,路由器主要有三种发展趋势:一是越来越多的功能以硬件方式来实现,具体表现为ASIC芯片使用得越来越广泛;二是放弃使用共享总线,而使用交换背板,即开始普遍采用交换式路由技术;三是并行处理技术在路由器中运行,极大地提高了路由器的路由处理能力和速度。 下面是路由器的总体发展过程:

  ·第一代单总线单CPU结构路由器

  最初的路由器采用了传统计算机体系结构,包括共享中央总线、中央CPU、内存及 挂在共享总线上的多个网络物理接口。如Cisco2501路由器就是第一代路由器的典型代表,其中CPU是Motorola的68302处理器,具有一个AUI以太网接口和两个广域网接口。
 
  中央CPU完成除所有物理接口之外的其他所有功能,数据包从一个物理接口接收进 来,经总线送到中央CPU中做到转发决定处理,然后又经总线送到另一个物理接口发送 出去。这种单总线单CPU的主要局限是处理速度慢,一个CPU完成所有的任务,从而限制了系统的吞吐量。另外,系统容错性也不好,CPU若出现故障容易导致系统完全瘫痪 。但该结构的优点是系统价格低。目前的边缘路由器基本上都是这种结构。 

  ·第二代单总线主从CPU结构路由器

  采用主从两个CPU代替了原来仅一个CPU结构,因而较大地降低了CPU的负荷,提高 了处理速度。第二代路由器的两个CPU为非对称主从式关系结构,其中一个CPU负责通 信链路层的协议处理,另一个CPU则作为主CPU负责网络层以上的处理,主要包括转发决 定、路由算法和配置控制等计算工作。
 
  总体上来说,第二代体系结构实际上是第一代体系结构的简单延伸,对系统的容错性能没 有多大提高,速度的提高也非常有限。像这种单总线主从CPU结构的典型设备有3Com公 司的NetBuilder2路由器等。 


  ·第三代单总线对称式多CPU结构路由器

  第三代路由器可以说改善了在第二代体系结构中主要限制,因为它开始采用了简单 的并行处理技术,即做到在每个接口处都有一个独立CPU,专门单独负责接收和发送本 接口数据包,管理接收发送队列、查询路由表做到出转发决定等。而主控CPU仅完成路 由器配置控制管理等非实时功能。
 
  这种体系结构的优点是本地转发/过滤数据包的决定由每个接口处理的专用CPU来完 成,对数据包的处理被分散到每块接口卡上。第三代路由器的主要代表有北电的Bay BCN系列,其中大部分接口CPU采用的是性能并不算高的Motorola 60MHz的MC68060或 33MHz的MC68040。 

  ·第四代多总线多CPU结构路由器

  第四代路由器至少包括三类以上总线和三类以上CPU。显然,这种路由器的结构非常 复杂,性能和功能也非常强大。这完全可以从该类路由器的典型之作Cisco7000系列中看 出。在Cisco7000中共有3类CPU和3条总线,分别是接口CPU、交换CPU、路由CPU、CxBUS 、dBUS、SxBUS。 

  ·第五代共享内存式结构路由器

  在共享存储器结构路由器中,使用了大量的高速RAM来存储输入数据,并可实现向输 出端的转发。在这种体系结构中,由于数据首先从输入端口存入共享存储器,再从共享 存储器结构路由器的交换带宽主要由存储器的带宽决定。为了提高带宽,必须增大存储 器的带宽,并采用较多存储模块。
 
  显然,当规模较小时,这类结构还比较容易实现,但当系统升级扩展时,设备所需 要的连线将会大量增加,控制也会变得越来越复杂。这种结构不适应向更高水平发展。 

  ·第六代交叉开关体系结构路由器

  与共享内存式结构路由器相比,基于交叉开关设计则有更好的可扩展性能,并且省 去了控制大量存储模块的复杂性和高成本。在交叉开关体系结构路由器中,数据直接从 输入端经过交叉开关流向输出端。它采用交叉开关结构替代共享总线,这样就允许多个 数据包同时通过不同的线路进行传送,从而极大地提高了系统的吞吐量,使得系统性能 得到了显著提高。系统的最终交换带宽仅取决于中央交叉阵列和各模块的能力,而不是 取决于互连线自身。就目前来看,这种方案是高速核心路由器的最佳方案。 
  新一代路由器普遍采用交换方法来充分利用公共通信链路设备,不但有效地提高 了整个链路的利用率,其交换还为各结点间通信的并行传输提供了可能性,这类路由 器也就是具有交换功能的路由器。一个性能和功能优秀的路由器,不但要有科学的路由计算法则,有足够的传输带宽和高速率,还要有较强的信息流量控制能力。

网络学堂十五:交换机VLAN的配置

  谈到VLAN,或许许多人都觉得非常神秘,甚至包括一些网管人员。其实有关VLAN的技术标准IEEE 802.1Q早在1999年6月份就由IEEE委员正式颁布实施了,而且最早的VLNA技术早在1996年Cisco(思科)公司就提出了。随着几年来的发展,VLAN技术得到广泛的支持,在大大小小的企业网络中广泛应用,成为当前最为热门的一种以太局域网技术。本篇就要为大家介绍交换机的一个最常见技术应用--VLAN技术,并针对中、小局域网VLAN的网络配置以实例的方式向大家简单介绍其配置方法。

  一、VLAN基础

  VLAN(Virtual Local Area Network)的中文名为"虚拟局域网",注意不是"VPN"(虚拟专用网)。VLAN是一种将局域网设备从逻辑上划分(注意,不是从物理上划分)成一个个网段,从而实现虚拟工作组的新兴数据交换技术。这一新兴技术主要应用于交换机和路由器中,但主流应用还是在交换机之中。但又不是所有交换机都具有此功能,只有VLAN协议的第三层以上交换机才具有此功能,这一点可以查看相应交换机的说明书即可得知。

  IEEE于1999年颁布了用以标准化VLAN实现方案的802.1Q协议标准草案。VLAN技术的出现,使得管理员根据实际应用需求,把同一物理局域网内的不同用户逻辑地划分成不同的广播域,每一个VLAN都包含一组有着相同需求的计算机工作站,与物理上形成的LAN有着相同的属性。由于它是从逻辑上划分,而不是从物理上划分,所以同一个VLAN内的各个工作站没有限制在同一个物理范围中,即这些工作站可以在不同物理LAN网段。由VLAN的特点可知,一个VLAN内部的广播和单播流量都不会转发到其他VLAN中,从而有助于控制流量、减少设备投资、简化网络管理、提高网络的安全性。

  交换技术的发展,也加快了新的交换技术(VLAN)的应用速度。通过将企业网络划分为虚拟网络VLAN网段,可以强化网络管理和网络安全,控制不必要的数据广播。在共享网络中,一个物理的网段就是一个广播域。而在交换网络中,广播域可以是有一组任意选定的第二层网络地址(MAC地址)组成的虚拟网段。这样,网络中工作组的划分可以突破共享网络中的地理位置限制,而完全根据管理功能来划分。这种基于工作流的分组模式,大大提高了网络规划和重组的管理功能。在同一个VLAN中的工作站,不论它们实际与哪个交换机连接,它们之间的通讯就好象在独立的交换机上一样。同一个VLAN中的广播只有VLAN中的成员才能听到,而不会传输到其他的 VLAN中去,这样可以很好的控制不必要的广播风暴的产生。同时,若没有路由的话,不同VLAN之间不能相互通讯,这样增加了企业网络中不同部门之间的安全性。网络管理员可以通过配置VLAN之间的路由来全面管理企业内部不同管理单元之间的信息互访。交换机是根据用户工作站的MAC地址来划分VLAN的。所以,用户可以自由的在企业网络中移动办公,不论他在何处接入交换网络,他都可以与VLAN内其他用户自如通讯。

  VLAN网络可以是有混合的网络类型设备组成,比如:10M以太网、100M以太网、令牌网、FDDI、CDDI等等,可以是工作站、服务器、集线器、网络上行主干等等。

  VLAN除了能将网络划分为多个广播域,从而有效地控制广播风暴的发生,以及使网络的拓扑结构变得非常灵活的优点外,还可以用于控制网络中不同部门、不同站点之间的互相访问。

  VLAN是为解决以太网的广播问题和安全性而提出的一种协议,它在以太网帧的基础上增加了VLAN头,用VLAN ID把用户划分为更小的工作组,限制不同工作组间的用户互访,每个工作组就是一个虚拟局域网。虚拟局域网的好处是可以限制广播范围,并能够形成虚拟工作组,动态管理网络。
 二、VLAN的划分方法

  VLAN在交换机上的实现方法,可以大致划分为六类:

  1. 基于端口划分的VLAN

  这是最常应用的一种VLAN划分方法,应用也最为广泛、最有效,目前绝大多数VLAN协议的交换机都提供这种VLAN配置方法。这种划分VLAN的方法是根据以太网交换机的交换端口来划分的,它是将VLAN交换机上的物理端口和VLAN交换机内部的PVC(永久虚电路)端口分成若干个组,每个组构成一个虚拟网,相当于一个独立的VLAN交换机。

  对于不同部门需要互访时,可通过路由器转发,并配合基于MAC地址的端口过滤。对某站点的访问路径上最靠近该站点的交换机、路由交换机或路由器的相应端口上,设定可通过的MAC地址集。这样就可以防止非法入侵者从内部盗用IP地址从其他可接入点入侵的可能。

  从这种划分方法本身我们可以看出,这种划分的方法的优点是定义VLAN成员时非常简单,只要将所有的端口都定义为相应的VLAN组即可。适合于任何大小的网络。它的缺点是如果某用户离开了原来的端口,到了一个新的交换机的某个端口,必须重新定义。

  2. 基于MAC地址划分VLAN

  这种划分VLAN的方法是根据每个主机的MAC地址来划分,即对每个MAC地址的主机都配置他属于哪个组,它实现的机制就是每一块网卡都对应唯一的MAC地址,VLAN交换机跟踪属于VLAN MAC的地址。这种方式的VLAN允许网络用户从一个物理位置移动到另一个物理位置时,自动保留其所属VLAN的成员身份。

  由这种划分的机制可以看出,这种VLAN的划分方法的最大优点就是当用户物理位置移动时,即从一个交换机换到其他的交换机时,VLAN不用重新配置,因为它是基于用户,而不是基于交换机的端口。这种方法的缺点是初始化时,所有的用户都必须进行配置,如果有几百个甚至上千个用户的话,配置是非常累的,所以这种划分方法通常适用于小型局域网。而且这种划分的方法也导致了交换机执行效率的降低,因为在每一个交换机的端口都可能存在很多个VLAN组的成员,保存了许多用户的MAC地址,查询起来相当不容易。另外,对于使用笔记本电脑的用户来说,他们的网卡可能经常更换,这样VLAN就必须经常配置。

  3. 基于网络层协议划分VLAN

  VLAN按网络层协议来划分,可分为IP、IPX、DECnet、AppleTalk、Banyan等VLAN网络。这种按网络层协议来组成的VLAN,可使广播域跨越多个VLAN交换机。这对于希望针对具体应用和服务来组织用户的网络管理员来说是非常具有吸引力的。而且,用户可以在网络内部自由移动,但其VLAN成员身份仍然保留不变。

  这种方法的优点是用户的物理位置改变了,不需要重新配置所属的VLAN,而且可以根据协议类型来划分VLAN,这对网络管理者来说很重要,还有,这种方法不需要附加的帧标签来识别VLAN,这样可以减少网络的通信量。这种方法的缺点是效率低,因为检查每一个数据包的网络层地址是需要消耗处理时间的(相对于前面两种方法),一般的交换机芯片都可以自动检查网络上数据包的以太网祯头,但要让芯片能检查IP帧头,需要更高的技术,同时也更费时。当然,这与各个厂商的实现方法有关。

  4. 根据IP组播划分VLAN

  IP 组播实际上也是一种VLAN的定义,即认为一个IP组播组就是一个VLAN。这种划分的方法将VLAN扩大到了广域网,因此这种方法具有更大的灵活性,而且也很容易通过路由器进行扩展,主要适合于不在同一地理范围的局域网用户组成一个VLAN,不适合局域网,主要是效率不高。

  5. 按策略划分VLAN

  基于策略组成的VLAN能实现多种分配方法,包括VLAN交换机端口、MAC地址、IP地址、网络层协议等。网络管理人员可根据自己的管理模式和本单位的需求来决定选择哪种类型的VLAN 。

  6. 按用户定义、非用户授权划分VLAN

  基于用户定义、非用户授权来划分VLAN,是指为了适应特别的VLAN网络,根据具体的网络用户的特别要求来定义和设计VLAN,而且可以让非VLAN群体用户访问VLAN,但是需要提供用户密码,在得到VLAN管理的认证后才可以加入一个VLAN。


  三、VLAN的优越性

  任何新技术要得到广泛支持和应用,肯定存在一些关键优势,VLAN技术也一样,它的优势主要体现在以下几个方面:

  1. 增加了网络连接的灵活性

  借助VLAN技术,能将不同地点、不同网络、不同用户组合在一起,形成一个虚拟的网络环境 ,就像使用本地LAN一样方便、灵活、有效。VLAN可以降低移动或变更工作站地理位置的管 理费用,特别是一些业务情况有经常性变动的公司使用了VLAN后,这部分管理费用大大降低。

  2. 控制网络上的广播

  VLAN可以提供建立防火墙的机制,防止交换网络的过量广播。使用VLAN,可以将某个交换端口或用户赋于某一个特定的VLAN组,该VLAN组可以在一个交换网中或跨接多个交换机, 在一个VLAN中的广播不会送到VLAN之外。同样,相邻的端口不会收到其他VLAN产生的广 播。这样可以减少广播流量,释放带宽给用户应用,减少广播的产生。

  3. 增加网络的安全性

  因为一个VLAN就是一个单独的广播域,VLAN之间相互隔离,这大大提高了网络的利用率,确保了网络的安全保密性。人们在LAN上经常传送一些保密的、关键性的数据。保密的数据应 提供访问控制等安全手段。一个有效和容易实现的方法是将网络分段成几个不同的广播组, 网络管理员限制了VLAN中用户的数量,禁止未经允许而访问VLAN中的应用。交换端口可以基 于应用类型和访问特权来进行分组,被限制的应用程序和资源一般置于安全性VLAN中。

  四、VLAN网络的配置实例

  为了给大家一个真实的配置实例学习机会,下面就以典型的中型局域网VLAN配置为例向各位介绍目前最常用的按端口划分VLAN的配置方法。

  某公司有100台计算机左右,主要使用网络的部门有:生产部(20)、财务部(15)、人事部(8)和信息中心(12)四大部分,如图1所示。

  网络基本结构为:整个网络中干部分采用3台Catalyst 1900网管型交换机(分别命名为:Switch1、Switch2和Switch3,各交换机根据需要下接若干个集线器,主要用于非VLAN用户,如行政文书、临时用户等)、一台Cisco 2514路由器,整个网络都通过路由器Cisco 2514与外部互联网进行连接。


图1

  所连的用户主要分布于四个部分,即:生产部、财务部、信息中心和人事部。主要对这四个部分用户单独划分VLAN,以确保相应部门网络资源不被盗用或破坏。

 

  现为了公司相应部分网络资源的安全性需要,特别是对于像财务部、人事部这样的敏感部门,其网络上的信息不想让太多人可以随便进出,于是公司采用了VLAN的方法来解决以上问题。通过VLAN的划分,可以把公司主要网络划分为:生产部、财务部、人事部和信息中心四个主要部分,对应的VLAN组名为:Prod、Fina、Huma、Info,各VLAN组所对应的网段如下表所示。

  VLAN 号
VLAN 名
端口号

2
P rod
Switch 1 2?21

3
Fina
Switch2 2?16

4
Huma
Switch3 2?9

5
Info
Switch3 10?21



  【注】之所以把交换机的VLAN号从"2"号开始,那是因为交换机有一个默认的VLAN,那就是"1"号VLAN,它包括所有连在该交换机上的用户。

  VLAN的配置过程其实非常简单,只需两步:(1)为各VLAN组命名;(2)把相应的VLAN对应到相应的交换机端口。

  下面是具体的配置过程:

  第1步:设置好超级终端,连接上1900交换机,通过超级终端配置交换机的VLAN,连接成功后出现如下所示的主配置界面(交换机在此之前已完成了基本信息的配置):

  1 user(s) now active on Management Console.
  User Interface Menu
  [M] Menus
  [K] Command Line
  [I] IP Configuration
  Enter Selection:

  【注】超级终端是利用Windows系统自带的"超级终端"(Hypertrm)程序进行的,具体参见有关资料。

  第2步:单击"K"按键,选择主界面菜单中"[K] Command Line"选项 ,进入如下命令行配置界面:
  CLI session with the switch is open.
  To end the CLI session,enter [Exit ].
  >

  此时我们进入了交换机的普通用户模式,就象路由器一样,这种模式只能查看现在的配置,不能更改配置,并且能够使用的命令很有限。所以我们必须进入"特权模式"。
 第3步:在上一步">"提示符下输入进入特权模式命令"enable",进入特权模式,命令格式为">enable",此时就进入了交换机配置的特权模式提示符:

  #config t
  Enter configuration commands,one per line.End with CNTL/Z
  (config)#

  第4步:为了安全和方便起见,我们分别给这3个Catalyst 1900交换机起个名字,并且设置特权模式的登陆密码。下面仅以Switch1为例进行介绍。配置代码如下:

  (config)#hostname Switch1
  Switch1(config)# enable password level 15 XXXXXX
  Switch1(config)#

  【注】特权模式密码必须是4~8位字符这,要注意,这里所输入的密码是以明文形式直接显示的,要注意保密。交换机用 level 级别的大小来决定密码的权限。Level 1 是进入命令行界面的密码,也就是说,设置了 level 1 的密码后,你下次连上交换机,并输入 K 后,就会让你输入密码,这个密码就是 level 1 设置的密码。而 level 15 是你输入了"enable"命令后让你输入的特权模式密码。

  第5步:设置VLAN名称。因四个VLAN分属于不同的交换机,VLAN命名的命令为" vlan 'vlan号'name 'vlan名称',在Switch1、Switch2、Switch3、交换机上配置2、3、4、5号VLAN的代码为:

  Switch1 (config)#vlan 2 name Prod
  Switch2 (config)#vlan 3 name Fina
  Switch3 (config)#vlan 4 name Huma
  Switch3 (config)#vlan 5 name Info

  【注】以上配置是按表1规则进行的。

  第6步:上一步我们对各交换机配置了VLAN组,现在要把这些VLAN对应于表1所规定的交换机端口号。对应端口号的命令是"vlan-membership static/ dynamic' VLAN号'"。在这个命令中"static"(静态)和"dynamic"(动态)分配方式两者必须选择一个,不过通常都是选择"static"(静态)方式。VLAN端口号应用配置如下:

  (1). 名为"Switch1"的交换机的VLAN端口号配置如下:

  Switch1(config)#int e0/2
  Switch1(config-if)#vlan-membership static 2
  Switch1(config-if)#int e0/3
  Switch1(config-if)#vlan-membership static 2
  Switch1(config-if)#int e0/4
  Switch1(config-if)#vlan-membership static 2
  ……
  Switch1(config-if)#int e0/20
  Switch(config-if)#vlan-membership static 3
  Switch1(config-if)#int e0/21
  Switch1(config-if)#vlan-membership static 3
  Switch1(config-if)#

  【注】"int"是"nterface"命令缩写,是接口的意思。"e0/3"是"ethernet 0/2"的缩写,代表交换机的0号模块2号端口。
(2). 名为"Switch2"的交换机的VLAN端口号配置如下:

  Switch2(config)#int e0/2
  Switch2(config-if)#vlan-membership static 3
  Switch2(config-if)#int e0/3
  Switch2(config-if)#vlan-membership static 3
  Switch2(config-if)#int e0/4
  Switch2(config-if)#vlan-membership static 3
  ……
  Switch2(config-if)#int e0/15
  Switch2(config-if)#vlan-membership static 3
  Switch2(config-if)#int e0/16
  Switch2(config-if)#vlan-membership static 3
  Switch2(config-if)#

  (3). 名为"Switch3"的交换机的VLAN端口号配置如下(它包括两个VLAN组的配置),先看VLAN 4(Huma)的配置代码:

  Switch3(config)#int e0/2
  Switch3(config-if)#vlan-membership static 4
  Switch3(config-if)#int e0/3
  Switch3(config-if)#vlan-membership static 4
  Switch3(config-if)#int e0/4
  Switch3(config-if)#vlan-membership static 4
  ……
  Switch3(config-if)#int e0/8
  Switch3(config-if)#vlan-membership static 4
  Switch3(config-if)#int e0/9
  Switch3(config-if)#vlan-membership static 4
  Switch3(config-if)#
  下面是VLAN5(Info)的配置代码:
  Switch3(config)#int e0/10
  Switch3(config-if)#vlan-membership static 5
  Switch3(config-if)#int e0/11
  Switch3(config-if)#vlan-membership static 5
  Switch3(config-if)#int e0/12
  Switch3(config-if)#vlan-membership static 5
  ……
  Switch3(config-if)#int e0/20
  Switch3(config-if)#vlan-membership static 5
  Switch3(config-if)#int e0/21
  Switch3(config-if)#vlan-membership static 5
  Switch3(config-if)#

  好了,我们已经按表1要求把VLAN都定义到了相应交换机的端口上了。为了验证我们的配置,可以在特权模式使用"show vlan"命令显示出刚才所做的配置,检查一下是否正确。

  以上是就Cisco Catalyst 1900交换机的VLAN配置进行介绍了,其它交换机的VLAN配置方法基本类似,参照有关交换机说明书即可。

  本篇介绍了交换机的常用应用技术VLAN技术及其配置方法,下一篇将正式介绍另一个常见网络设备--路由器。路由器在网络之间的通信中所起的作用是不可替代的,同样也是一种非常关键的网络设备,希望大家与我一起来认识它。

网络学堂十四:交换机配置全接触

交换机的配置一直以来是非常神秘的,不仅对于一般用户,对于绝大多数网管人员来说也是如此,同时也是作为网管水平高低衡量的一个重要而又基本的标志。这主要在两个原因,一是绝大多数企业所配置的交换机都是桌面非网管型交换机,根本不需任何配置,纯属“傻瓜”型,与集线器一样,接上电源,插好网线就可以正常工作;另一方面多数中、小企业老总对自己的网管员不是很放心,所以即使购买的交换机是网管型的,也不让自己的网管人员来配置,而是请厂商工程师或者其它专业人员来配置,所以这些中、小企业网管员也就很难有机会真正自己动手来配置一台交换机。
  交换机的详细配置过程比较复杂,而且具体的配置方法会因不同品牌、不同系列的交换机而有所不同,本文教给大家的只是通用配置方法,有了这些通用配置方法,我们就能举一反三,融会贯通。

  通常网管型交换机可以通过两种方法进行配置:一种就是本地配置;另一种就是远程网络配置两种方式,但是要注意后一种配置方法只有在前一种配置成功后才可进行,下面分别讲述。

  一、本地配置方式

  本地配置我们首先要遇到的是它的物理连接方式,然后还需要面对软件配置,在软件配置方面我们主要以最常见的思科的“Catalyst 1900”交换机为例来讲述。

  因为要进行交换机的本地配置就要涉及到硬、软件的连接了,所以下面我们分这两步来说明配置的基本连接过程。

  1.物理连接

  因为笔记本电脑的便携性能,所以配置交换机通常是采用笔记本电脑进行,在实在无笔记本的情况下,当然也可以采用台式机,但移动起来麻烦些。交换机的本地配置方式是通过计算机与交换机的“Console”端口直接连接的方式进行通信的,它的连接图如图1所示。


图1

  可进行网络管理的交换机上一般都有一个“Console”端口(这个在前面介绍集线器时已作介绍,交换机也一样),它是专门用于对交换机进行配置和管理的。通过Console端口连接并配置交换机,是配置和管理交换机必须经过的步骤。虽然除此之外还有其他若干种配置和管理交换机的方式(如Web方式、Telnet方式等),但是,这些方式必须依靠通过Console端口进行基本配置后才能进行。因为其他方式往往需要借助于IP地址、域名或设备名称才可以实现,而新购买的交换机显然不可能内置有这些参数,所以通过Console端口连接并配置交换机是最常用、最基本也是网络管理员必须掌握的管理和配置方式。

 第1步:单击“开始”按钮,在“程序”菜单的“附件”选项中单击“超级终端”,弹出如图4所示界面。


图4

  第2步:双击“Hypertrm”图标,弹出如图5所示对话框。这个对话框是用来对立一个新的超级终端连接项。


图5

  第3步:在“名称”文本框中键入需新建超的级终端连接项名称,这主要是为了便于识别,没有什么特殊要求,我们这里键入“Cisco”,如果您想为这个连接项选择一个自己喜欢的图标的话,您也可以在下图的图标栏中选择一个,然后单击“确定”按钮,弹出如图6所示的对话框。


图6

  第4步:在“连接时使用”下拉列表框中选择与交换机相连的计算机的串口。单击“确定”按钮,弹出如图7所示的对话框。


图7

  第5步:在“波特率”下拉列表框中选择“9600”,因为这是串口的最高通信速率,其他各选项统统采用默认值。单击“确定”按钮,如果通信正常的话就会出现类似于如下所示的主配置界面,并会在这个窗口中就会显示交换机的初始配置情况。


 Catalyst 1900 Management Console
  Copyright (c) Cisco Systems, Inc。 1993-1999
  All rights reserved。
  Standard Edition Software
  Ethernet address: 00-E0-1E-7E-B4-40
  PCA Number: 73-2239-01
  PCA Serial Number: SAD01200001
  Model Number: WS-C1924-A
  System Serial Number: FAA01200001
  ---------------------------------------
  User Interface Menu
  [M] Menus  //主配置菜单
  [I] IP Configuration  //IP地址等配置
  [P] Console Password //控制密码配置
  Enter Selection:  //在此输入要选择项的快捷字母,然后按回车键确认

  【注】“//”后面的内容为笔者对前面语句的解释,下同。

  至此就正式进入了交换机配置界面了,下面的工作就可以正式配置交换机了。

  3、交换机的基本配置

  进入配置界面后,如果是第一次配置,则首先要进行的就是IP地址配置,这主要是为后面进行远程配置而准备。IP地址配置方法如下:

  在前面所出现的配置界面“Enter Selection:”后中输入“I”字母,然后单击回车键,则出现如下配置信息:

  The IP Configuration Menu appears。
  Catalyst 1900 - IP Configuration
  Ethernet Address:00-E0-1E-7E-B4-40
  -------------Settings------------------
  [I] IP address
  [S] Subnet mask
  [G] Default gateway
  [B] Management Bridge Group
  [M] IP address of DNS server 1
  [N] IP address of DNS server 2
  [D] Domain name
  [R] Use Routing Information Protocol
  -------------Actions-------------------
  [P] Ping
  [C] Clear cached DNS entries
  [X] Exit to previous menu
  Enter Selection: 

  在以上配置界面最后的“Enter Selection:”后再次输入“I”字母,选择以上配置菜单中的“IP address选项,配置交换机的IP地址,单击回车键后即出现如下所示配置界面:


  Enter administrative IP address in dotted quad format (nnn。nnn。nnn。nnn): //按”nnn。nnn。nnn。nnn“格式输入IP地址
  Current setting ===> 0.0.0.0 //交换机没有配置前的IP地址为”0.0.0.0“,代表任何IP地址
  New setting ===> //在此处键入新的IP地址

  如果你还想配置交换机的子网掩码和默认网关,在以上IP配置界面里面分别选择”S“和”G“项即可。现在我们再来学习一下密码的配置:

  在以上IP配置菜单中,选择”X“项退回到前面所介绍的交换机配置界面。

  输入”P“字母后按回车键,然后在出现的提示符下输入一个4 ̄8位的密码(为安全起见,在屏幕上都是以”*“号显示),输入好后按回车键确认,重新回到以上登录主界面。

  在你配置好IP和密码后,交换机就能够按照默认的配置来正常工作。如果想更改交换机配置以及监视网络状况,你可以通过控制命令菜单,或者是在任何地方通过基于WEB的Catalyst 1900 Switch Manager来进行操作。

  如果交换机运行的是Cisco Catalyst 1900/2820企业版软件。你可以通过命令控制端口(command-line interface CLI)来改变配置。当进入配置主界面后,就在显示菜单多了项”Command Line“,而少了项”Console Password“,它在下级菜单中进行。

  1 user(s) now active on Management Console。
  User Interface Menu
  [M] Menus
  [K] Command Line
  [I] IP Configuration
  Enter Selection:

  在这一版本中的配置方法与前面所介绍的配置方法基本一样,不同的只是在这一版本中可以通过命令方式(选择”[K] Command Line“项即可)进行一些较高级配置,下面本文仅作简单介绍,在下篇中将介绍一个常见的高级配置,那就是VLAN的配置。

  4、交换机高级配置的常见命令

  在交换机的高级配置中,通常是利用以上配置菜单中的”[K] Command Line“项进行的。

  Cisco交换机所使用的软件系统为Catalyst IOS。CLI的全称为”Command-Line Interface“,中文名称就称之为”命令行界面“,它是一个基于DOS命令行的软件系统模式,对大小写不敏感(即不区分大小写)。有这种模式的不仅交换机有、路由器、防火墙都有,其实就是一系列相关命令,但它与DOS命令不同,CLI可以缩写命令与参数,只要它包含的字符足以与其他当前可用至的命令和参数区别开来即可。虽然对交换机的配置和管理也可以通过多种方式实现,既可以使用纯字符形式的命令行和菜单(Menu),也可以使用图形界面的Web浏览器或专门的网管软件(如CiscoWorks 2000)。相比较而言,命令行方式的功能更强大,但掌握起来难度也更大些。下面把交换机的一些常用的配置命令介绍如下。

  Cisco IOS共包括6种不同的命令模式:User EXEC模式、Privileged EXEC模式、VLAN dataBase模式、Global configuration模式、Interface configuration模式和Line configuration模式。当在不同的模式下,CLI界面中会出现不同的提示符。为了方便大家的查找和使用,表1列出了6种CLI命令模式的用途、提示符、访问及退出方法。


  表1::CLI命令模式特征表 模式
访问方法
提示符
退出方法
用途

User Exec
开始一个进程
switch>
键入“ logout”或“quit”
改变终端设置执行基本测试 显示系统信息

Privilege-d Exec
在“ User Exec”模式中键入“enable”命令
switch#
键入“ disable”退出
校验键入的命令。该模式由密码保护

VLAN Database
在“ Privileged Exec”模式中键入“vlan database”命令
switch(vlan)#
键入“ exit”,返回到“Privileged Exec”模式
配置 VLAN参数

Global Configura-tion
在“ privileged Exec”模式中键入“configure”命令
switch(config)#
键入“ exit”或“end”或下“Ctrl-Z”组合键,返回至“privileged EXEC”状态
将配置的参数应用于整个交换机

Interface Configura-tion
在“ Global Configuration”模式中,键入“interface ”命令
switch(config-if)#
键入 exit返回至“Global Configuration”模式按下“Ctrl-Z ”组合键或键入“end”,返回至“Pprivileged Exec”模式
为“ Ethernet interfaces”配置参数

Line Configura-tion
在模式“ Global Configuration”中,为“line console”命令指定一行
switch(config-line)#
键入“ exit”返回至“Global Configuration”模式按下“Ctrl-Z ”或键入“end”,返回至“Privileged Exec”模式
为“ terminal line”配置参数



  Cisco IOS命令需要在各自的命令模式下才能执行,因此,如果想执行某个命令,必须先进入相应的配置模式。例如”interface type_number“命令只能在”Global configuration“模式下执行,而”duplex full-flow-control“命令却只能在”Interface configuration“模式下执行。

  在交换机CLI命令中,有一个最基本的命令,那就是帮助命令”?“,在任何命令模式下,只需键入”?“,即显示该命令模式下所有可用到的命令及其用途,这就交换机的帮助命令。另外,还可以在一个命令和参数后面加”?“,以寻求相关的帮助。

  例如,我们想看一下在”Privileged Exec“模式下在哪些命令可用,那么,可以在”#“提示符下键入”?“,并回车。再如,如果想继续查看”Show“命令的用法,那么,只需键入”show ?“并回车即可。另外,”?“还具有局部关键字查找功能。也就是说,如果只记得某个命令的前几个字符,那么,可以使用”?“让系统列出所有以该字符或字符串开头的命令。但是,在最后一个字符和”?“之间不得有空格。例如,在”Privileged Exec“模式下键入”c?“,系统将显示以”c“开头的所有命令。

  还要说明的一点是:Cisco IOS命令均支持缩写命令,也就是说,除非您有打字的癖好,否则根本没有必要键入完整的命令和关键字,只要键入的命令所包含的字符长到足以与其他命令区别就足够了。例如,可将”show configure“命令缩写为”sh conf“,可将”show configure“命令缩写为”sh conf“然后回车执行即可。

  以上介绍了命令方式下的常见配置命令,由于配置过程比较复杂,在此不作详细介绍。
 二、远程配置方式

  我们上面就已经介绍过交换机除了可以通过Console端口与计算机直接连接外,还可以通过交换机的普通端口进行连接。如果是堆栈型的,也可以把几台交换机堆在一起进行配置,因为这时实际上它们是一个整体,一般只有一台具有网管能力。这时通过普通端口对交换机进行管理时,就不再使用超级终端了,而是以Telnet或Web浏览器的方式实现与被管理交换机的通信。因为我们在前面的本地配置方式中已为交换机配置好了IP地址,我们可通过IP地址与交换机进行通信,不过要注意,同样只有是网管型的交换机才具有这种管理功能。因为这种远程配置方式中又可以通过两种不同的方式来进行,所以我们也就分别介绍。

  1、Telnet方式

  Telnet协议是一种远程访问协议,可以用它登录到远程计算机、网络设备或专用TCP/IP网络。Windows 95/98及其以后的Windows系统、UNIX/Linux等系统中都内置有Telnet客户端程序,我们就可以用它来实现与远程交换机的通信。

  在使用Telnet连接至交换机前,应当确认已经做好以下准备工作:

  ·在用于管理的计算机中安装有TCP/IP协议,并配置好了IP地址信息。
  ·在被管理的交换机上已经配置好IP地址信息。如果尚未配置IP地址信息,则必须通过Console端口进行设置。
  ·在被管理的交换机上建立了具有管理权限的用户帐户。如果没有建立新的帐户,则Cisco交换机默认的管理员帐户为”Admin“。

  在计算机上运行Telnet客户端程序(这个程序在Windows 系统中与UNIX、Linux系统中都有,而且用法基本是是兼容的,特别是在Windows 2000系统中的Telnet程序),并登录至远程交换机。如果我们前面已经设置交换机的IP地址为:61.159.62.182,下面只介绍进入配置界面的方法,至于如何配置那是比较多的,要视具体情况而定,不作具体介绍。进入配置界面步骤很简单,只需简单的两步:

  第1步:单击”开始“按钮选择”运行“菜单项,然后在对话框中按”telnet 61.159.62.182“格式输入登录(当然也可先不输入IP地址,在进入telnet主界面后再进行连接,但是这样会多了一步,直接在后面输入要连接的IP的地址更好些),如图8所示。如果为交换机配置了名称,则也可以直接在”Telnet“命令后面空一个空格后输入交换机的名称。


图8

  Telnet命令的一般格式如下:

 

  telnet [Hostname/port],这里要注意的是”Hostnqme包括了交换机的名称,但更多的是我们在前面是为交换机配置了IP地址,所以在这里更多的是指交换机的IP地址。格式后面的“Port”一般是不需要输入的,它是用来设定Telnet通信所用的端口的,一般来说Telnet通信端口,在TCP/IP协议中有规定,为23号端口,最好不用改它,也就是说我们可以不接这个参数。

  第2步,输入好后,单击“确定”按钮,或单击回车键,建立与远程交换机的连接。如图9所示为与计算机通过Tetnet与Catalyst 1900交换机建立连接时显示的界面。


图9

  在图中显示了包括两个菜单项的配置菜单:Menus、Command Line。然后,就可以根据实际需要对该交换机进行相应的配置和管理了。

  2、Web浏览器的方式

  当利用Console口为交换机设置好IP地址信息并启用HTTP服务后,即可通过支持JAVA的Web浏览器访问交换机,并可通过Web通过浏览器修改交换机的各种参数并对交换机进行管理。事实上,通过Web界面,可以对交换机的许多重要参数进行修改和设置,并可实时查看交换机的运行状态。不过在利用Web浏览器访问交换机之前,应当确认已经做好以下准备工作:
 ·在用于管理的计算机中安装TCP/IP协议,且在计算机和被管理的交换机上都已经配置好IP地址信息。
  ·用于管理的计算机中安装有支持JAVA的Web浏览器,如Internet Explorer 4.0及以上版本、Netscape 4.0及以上版本,以及Oprea with JAVA。
  ·在被管理的交换机上建立了拥有管理权限的用户帐户和密码。
  ·被管理交换机的Cisco IOS支持HTTP服务,并且已经启用了该服务。否则,应通过Console端口升级Cisco IOS或启用HTTP服务。

  通过Web浏览器的方式进行配置的方法如下:

  第1步:把计算机连接在交换机的一个普通端口上,在计算机上运行Web浏览器。在浏览器的“地址”中栏键入被管理交换机的IP地址(如61.159.62.182)或为其指定的名称。单击回车键,弹出如图10所示对话框。


图10

  第2步:分别在“用户名”和“密码”框中,键入拥有管理权限的用户名和密码。用户名/密码对应当事先通过Console端口进行设置。

  第3步:单击“确定”按钮,即可建立与被管理交换机的连接,在Web浏览器中显示交换机的管理界面。如图11所示页面为与Cisco Catalyst 1900建立连接后,显示在Web浏览器中的配置界面。首先看到的是要求输入用户帐号和密码,这时您就输入在上面已设置好的交换机配置超级用户帐号和密码进入系统。


图11

  接下来,就可以通过Web界面中的提示,一步步查看交换机的各种参数和运行状态,并可根据需要对交换机的某些参数作必要的修改。

  本篇简单介绍了交换机的基本配置方法,下一篇将要对交换机的常见应用--VLAN网络划分、配置方法进行详细介绍。

网络学堂十三:交换机技术及选购

  要正确理解交换机的工作原理以及其优越性,就不能不提到交换机的一些主流交换技术,正是在这些交换技术基础上,交换机才实现了比集线器更好地性能,为此本篇介绍几个主流的交换技术,随后在本篇最后将介绍交换机选购时的一些注意事项,帮助大家正确选购。

  一、交换机的交换方式

  目前交换机在传送源和目的端口的数据包时通常采用直通式交换、存储转发式和碎片隔离方式三种数据包交换方式,下面分别简述。

  1、直通交换方式

  采用直通交换方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。由于它只检查数据包的包头(通常只检查14个字节),不需要存储,所以切入方式具有延迟小,交换速度快的优点(所谓延迟(Latency)是指数据包进入一个网络设备到离开该设备所花的时间)。

  它的缺点主要有三个方面:一是因为数据包内容并没有被以太网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力;第二,由于没有缓存,不能将具有不同速率的输入/输出端口直接接通,而且容易丢包。如果要连到高速网络上,如提供快速以太网(100BASE-T)、FDDI或ATM连接,就不能简单地将输入/输出端口“接通”,因为输入/输出端口间有速度上的差异,必须提供缓存;第三,当以太网交换机的端口增加时,交换矩阵变得越来越复杂,实现起来就越困难。 

  2、存储转发方式

  存储转发(Store and Forward)是计算机网络领域使用得最为广泛的技术之一,以太网交换机的控制器先将输入端口到来的数据包缓存起来,先检查数据包是否正确,并过滤掉冲突包错误。确定包正确后,取出目的地址,通过查找表找到想要发送的输出端口地址,然后将该包发送出去。正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错误检测,并且能支持不同速度的输入/输出端口间的交换,可有效地改善网络性能。它的另一优点就是这种交换方式支持不同速度端口间的转换,保持高速端口和低速端口间协同工作。实现的办法是将10Mbps低速包存储起来,再通过100Mbps速率转发到端口上。 

  3、碎片隔离式(Fragment Free)

  这是介于直通式和存储转发式之间的一种解决方案。它在转发前先检查数据包的长度是否够64个字节(512 bit),如果小于64字节,说明是假包(或称残帧),则丢弃该包;如果大于64字节,则发送该包。该方式的数据处理速度比存储转发方式快,但比直通式慢,但由于能够避免残帧的转发,所以被广泛应用于低档交换机中。

  使用这类交换技术的交换机一般是使用了一种特殊的缓存。这种缓存是一种先进先出的FIFO(First In First Out),比特从一端进入然后再以同样的顺序从另一端出来。当帧被接收时,它被保存在FIFO中。如果帧以小于512比特的长度结束,那么FIFO中的内容(残帧)就会被丢弃。因此,不存在普通直通转发交换机存在的残帧转发问题,是一个非常好的解决方案。数据包在转发之前将被缓存保存下来,从而确保碰撞碎片不通过网络传播,能够在很大程度上提高网络传输效率。


  二、主流堆栈交换技术

  通过我们前面的介绍已经知道,按交换机工作在OSI/RM堆栈协议层来分的话,目前的交换机主要有第二层、第三层和第四层交换机,它们都有其对应的主流交换技术,下面分别予以介绍。

  1、第二层交换技术

  90年代初,在网络系统集成模式中大量引入了局域网交换机。局域网交换机是一种第二层网络设备,交换机在操作过程中不断地收集资料去建立它本身的地址表,这个表相当简单,主要标明某个MAC地址是在哪个端口上被发现的。当交换机接收到一个数据封包时,它检查该封包的目的MAC地址,核对一下自己的地址表以决定从哪个端口发送出去。而不是象集线器那样,任何一个发送方数据都会出现在集线器的所有端口上(不管是否为你所需)。这时的交换机因为其只能工作在OSI/RM的第二层,所以也就称之为第二层交换机,所采用的技术也就称之为“第二层交换技术”。

  “第二层交换”是指OSI第二层或称MAC层的交换。第二层交换机的引入,使得网络站点间可独享带宽,消除了无谓的碰撞检测和出错重发,提高了传输效率,在交换机中可并行的维护几个独立的、互不影响的通信进程。在交换网络环境下,用户信息只在源节点与目的节点之间进行传送,其他节点是不可见的。但有一点例外,当某一节点在网上发送广播或多目广播时,或某一节点发送了一个交换机不认识的MAC地址封包时,交换机上的所有节点都将收到这一广播信息。整个交换环境构成一个大的广播域。也就是说第二层交换机仍可能存在“广播风暴”,广播风暴会使网络的效率大打折扣,但出现情况的情形的比率比起集线器来说要少许多。

  第二层交换仍存在“广播风暴”的弱点,同时,使用第二层交换并不能给路由器的功能带来什么进步。这样的结果是,第二层交换只能在本地不含任何路由器的工作组中取得性能的提高。在使用第二层交换的工作组之间,通过路由器的端到端性能会因为路由器阻塞而掉包,从而导致实质上的性能下降。正因如此,其于路由方式的第三交换技术顺应时代的需要而产生了。

  2.第三层交换技术

  在网络系统集成的技术中,直接面向用户的第一层接口和第二层交换技术方面已得到令人满意的答案。但是,作为网络核心、起到网间互连作用的路由器技术却没有质的突破。传统的路由器基于软件,协议复杂,与局域网速度相比,其数据传输的效率较低。但同时它又作为网段(子网,虚拟网)互连的枢纽,这就使传统的路由器技术面临严峻的挑战。随着Internet、Intranet的迅猛发展和B/S(浏览器/服务器)计算模式的广泛应用,跨地域、跨网络的业务急剧增长,业界和用户深感传统的路由器在网络中的瓶颈效应,改进传统的路由技术已迫在眉睫。在这种情况下,一种新的路由技术应运而生,这就是第三层交换技术。说它是路由器,因为它可操作在网络协议的第三层,是一种路由理解设备并可起到路由决定的作用;说它是交换器,是因为它的速度极快,几乎达到第二层交换的速度。

  一个具有第三层交换功能的设备是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单的把路由器设备的硬件及软件简单地叠加在局域网交换机上。从硬件的实现上看,目前,第二层交换机的接口模块都是通过高速背板/总线(速率可高达几十Gbit/s)交换数据的。在第三层交换机中,与路由器有关的第三层路由硬件模块也插接在高速背板/总线上,这种方式使得路由模块可以与需要路由的其他模块间高速的交换数据,从而突破了传统的外接路由器接口速率的限制(10Mbit/s——100Mbit/s)。在软件方面,第三层交换机也有重大的举措,它将传统的基于软件的路由器软件进行了界定。目前基于第三层交换技术的第三层交换机得到了广泛的应用,并得到了用户一致的赞同。
 3、第四层交换

  虽然第三层交换技术使得用户可在工作组之间获得无失真的100Mbps、1000Mbps的数据交换速率。但这一切还得有一个先决条件,那就是只有当用户和服务器本身都能跟上网络中的带宽增长,包的传输可以达到系统的极限,即达到CPU能够处理的最大速度,才是真正的成功。目前的主要问题在于提高服务器的能力,因为越来越多功能强大的工作站连到Ethernet交换的桌面上,用户桌面的能力并没有得到充分的发挥。

  如果服务器容量能够满足需求,问题解决起来就相当简单。不幸的是,即使是最简单的对称多处理服务器的CPU升级也需要大量的时间,而且需要冗长繁杂的计划和管理。当一个网络的基础结构建立在G比特速率的第二层和第三层交换上,有高速WAN接入,服务器问题就将成为随之而来的瓶颈。也就是说如果服务器速度跟不上,即使是具有最快速交换的网络也不能完全确保端到端的性能。可以想像高优先权的业务在这种QoS使能的网络中会因服务器中低优先权的业务队列而阻塞。在更糟的情况下,服务器甚至会丧失循环处理业务的能力。在这样的需求背景下,第四层交换技术也就设计产生了,基于服务器设计的第四层交换扩展了服务器、第二层、第三层交换的性能和业务流的管理功能。

  第四层交换功能就像是虚IP,直接指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。

  在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCPSYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。第四层交换技术的优点主要体现在以下几个方面:

  (1)、从操作方面来看,第四层交换是稳固的,因为它将包控制在从源端到目的端的区间中。
  (2)、另一方面,路由器或第三层交换技术,只针对单一的包进行处理,不清楚上一个包从哪来、也不知道下一个包的情况。它们只是检测包报头中的TCP端口数字,根据应用建立优先级队列。路由器根据链路和网络可用的节点决定包的路由。
  (3)、第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。每个开放的区间与特定的服务器相关,为跟踪服务器,第四层交换使用多个服务器支持的特殊应用,随着服务器的增加而增强网络的整体性能。同时,第四层交换通过减少对任何特定服务器的依赖性而提高应用的可靠性。
  (4)、第四层交换也要求端到端QoS,提高第二层和第三层交换中一包接一包QoS传输的能力。例如,从级别高用户来的业务或重要应用的网络业务流,可以分配给最快的I/O系统和CPU,而普通的业务就分配给性能较差的机器。

  以上介绍了一些基本的第二层、第三层和第四层交换技术,其实还有许多复杂、先进的交换技术,在此就不作详细介绍了。同时要注意,以上所介绍的这些交换技术并不是只能单独存在,也许它们结合使用更具有优势,例如第二层、第三层和第四层交换在校园网络中可以有很好的应用。第二层交换机连接用户和网络,在子网中指引业务流,第三层交换机或路由器将包从一个子网传到另一个子网,第四层交换机将包传到终端服务器。
 三、交换机的选购

  交换机虽然目前有进入到桌面的趋势,但是对于一些比较高档的交换来说一般只有在较大型的局域网中存在,而且由于交换机历来在人们心中的神秘性决定了在交换机的选购方面多数情况下是商家说了算。

  在交换机的选购方面要注意的事项比较多,不再是像集线器一样那么几个简单的参数就可决定的。下面所列的是在交换机选购时要注意的几个主要方面。

  1.转发方式

  数据包的转发方式在前面已经介绍过,主要分为“直通式转发”(现为准直通式转发)和“存储式转发”。由于不同的转发方式适应于不同的网络环境,因此,应当根据自己的需要作出相应的选择。直通式由于只检查数据包的包头,不需要存储,所以切入方式具有延迟小,交换速度快的优点。但同时它又具有以以上所介绍的三个缺点。

  存储转发方式在数据处理时延时大,但它可以对进入交换机的数据包进行错误检测,并且能支持不同速度的输入/输出端口间的交换,有效地改善网络性能。同时这种交换方式支持不同速度端口间的转换,保持高速端口和低速端口间协同工作。

  低端交换机通常只拥有一种转发模式,或是存储转发模式,或是直通模式,往往只有中高端产品才兼具两种转发模式,并具有智能转换功能,可根据通信状况自动切换转发模式。通常情况下,如果网络对数据的传输速率要求不是太高,可选择存储转发式交换机;如果网络对数据的传输速率要求较高,可选择直通转发式交换机。

  2.延时

  交换机的延时(Latency)也称延迟时间,是指从交换机接收到数据包到开始向目的端口发送数据包之间的时间间隔。这主要受所采用的转发技术等因素的影响,延时越小,数据的传输速率越快,网络的效率也就越高。特别是对于多媒体网络而言,较大的数据延迟,往往导致多媒体的短暂中断,所以交换机的延迟时间越小越好,同时要注意的中,延时越小的交换机价格也就越贵。

  3.管理功能

  交换机的管理功能(Management)是指交换机如何控制用户访问交换机,以及系统管理人员通过软件对交换机的可管理程度如何。如果需要以上配置和管理,则须选择网管型交换机,否则只需选择非网管型的。目前几乎所有中、高档交换机都是可网管的,一般来说所有的厂商都会随机提供一份本公司开发的交换机管理软件,所有的交换机都能被第三方管理软件所管理。低档的交换机来通常不具有网管功能,属“傻瓜”型的,只需接上电源、插好网线即可正常工作。网管型价格要贵许多。

  4.MAC地址数

  通常前面的介绍,我们知道交换机之所以能够直接对目的节点发送数据包,而不是像集线器一样以广播方式对所有节点发送数据包,最关键的技术就是交换机可以识别连在网络上的节点的网卡MAC地址,形成一个MAC地址表。这个MAC地址表存放于交换机的缓存中,并记住这些地址,这样一来当需要向目的地址发送数据时,交换机就可在MAC地址表中查找这个MAC地址的节点位置,然后直接向这个位置的节点发送。

  但是不同档次的交换机每个端口所能够支持的MAC数量不同。在交换机的每个端口,都需要足够的缓存来记忆这些MAC地址,所以Buffer容量的大小就决定了相应交换机所能记忆的MAC地址数多少。通常交换机只要能够记忆1024个MAC地址基本上就可以了,而一般的交换机通常都能做到这一点,所以如果对网络规模不是很大的情况下,这参数无需太多考虑。当然越是高档的交换机能记住的MAC地址数就越多,这在选择时要视所连网络的规模而定了。

  5.背板带宽

  现在越来越多的100M交换到桌面方案是以实现VOD(视频点播)为目的,如果您有同样需求,在选购交换器时应注意交换机背板带宽,当然是越宽越好,它将为您的交换器在高负荷下提供高速交换。由于所有端口间的通讯都需要通过背板完成,所以背板所能够提供的带宽就成为端口间并发通讯时的总带宽。带宽越大,能够给各通讯端口提供的可用带宽越大,数据交换速度越快;带宽越小,则能够给各通讯端口提供的可用带宽越小,数据交换速度也就越慢。因此,在端口带宽、延迟时间相同的情况下,背板带宽越大,交换机的传输速率则越快。


  6.端口

  交换机也与集线器一样,也有端口带宽之分,但这里所指的带宽与集线器的端口带宽不一样,因为这里交换机上所指的端口带宽是独享的,而集线器上端口的带宽是共享的。交换机的端口带宽目前主要包括10M、100M和1000M三种,但就这三种带宽又有不同的组合形式,以满足不同类型网络的需要。最常见的组合形式包括n*100M+m*10M、n*10/100M、n*1000M+m*100M和n*1000M四种。

  n*100M+m*10M就是在一个交换机上同时有“n”个100Mbps带宽的端口和“m”个10Mbps带宽的端口,这“n+m”就是交换机的端口总和。当然这“n”与“m”可以是相同的,也可以是不同的,一般来说这“n”数要远比“m”数小。这种组合的交换机既可以作为小型廉价网络的中心节点,也可以用于大、中型网络中的工作组交换机。因为它也具有100Mbps带宽的端口,适合于大型网络的连接,100M端口一般用于服务器或主干网段的连接,或者用于级联至另一台交换机,10M端口则用于直接连接工作站计算机,从而实现不同交换机端口之间的高速连接,并满足网络内所有计算机对服务器高速连接的需求。该类交换机的最大特点就是价格低廉,且基本能够满足网络的所有需求。

  n*10/100M,这种组合的交换机相比前面那种又要先进一些,因为它的每个端口都可以自适应地达到10Mbps或100Mbps的带宽,这比固定几个100Mbps带宽的交换机当然是方便许多,在性能方面也肯定要好许多。目前这种组合方式的交换机是当前市场上的主流产品,能够自动适应10Mbps或100Mbps的速率,可以无缝连接以太网和快速以太网。该类型的交换机既可以作为工作组交换机直接连接客户机,实现100Mbps到桌面的高速交换,也可以作为小型网络中心节点。当直接连接至计算机时,在全双工状态下收发各占100Mbps带宽,从而能够实现200Mbps的带宽。当与n*100M+m*10M类型的交换机连接时,为连接至不同端口的交换机提供较快链路,满足多个端口间同时传输数据的需要。

  n*1000M+m*100M与上面所介绍的“n*100M+m*10M”组合形式的交换组合方式类似,只不过这里所指的带宽是“1000Mbps 与100Mbps”带宽,而不是“10Mbps与100Mbps”带宽的。这种端口配置的含义也是这种交换机同时具有n个1000Mbps带宽的端口和m个100Mbps带宽的端口,这里的“n+m”也一般是交换机的端口总数,但一般来说“n”值要远小于“m”值。目前这种配置的交换机已经逐渐由中心交换机和骨干交换机,慢慢地向大中型网络普及。也可作为小型网络中的中心交换机或骨干交换机,对上可直接连接至服务器,对下可连接各组交换机。千兆的带宽不仅能够很好地解决多用户对服务器突发性地访问问题,消除了服务器的瓶颈问题,而且还能够很好地解决高速交换机之间的互联问题,消除了级联端口的带宽瓶颈。当然这种交换机目前来说对于中、小型的单位来说还是有点贵。

  n*1000M,这种交换机是目前很先进的一种,当然价格也是很贵的,因为它提供了全部都是1000Mbps的端口带宽,这种交换机目前一般是充当在大中型网络中心交换机或骨干交换机的角色。在中、小型企业单位局域网中一般来说还是很产见的,因为它实在太贵了,而且对于中、小型个、事业单位的局域网也根本用不上这1000Mbps的带宽。

  7.光纤解决方案

  最后要谈一点就是光纤的选择了,如果你的布线中必须选用光纤,则在您的交换机选择方案中可以有以下三种方案:其一选择具有光纤接口的交换机;另外还可以在模块结构的交换机中加装光纤模块;最后一种就是加装光纤与双绞线的转发器。第一种性能最好,但不够灵活,而且价格较贵;第二种方案具有较强的灵活配置能力,性能也较好,但价格最贵;最后一种方案价格最便宜,但性能受影响较大。

  好了,有关交换机的基本技术及选购注意事项就简单介绍至此,下一篇就要正式介绍交换机的另一重要方面,即交换机的配置,这对于网管员来说是非常重要,而且是必须掌握,敬请关注!

网络学堂十二:交换机的分类

  由于交换机所具有许多优越性,所以它的应用和发展速度远远高于集线器,出现了各种类型的交换机,主要是为了满足各种不同应用环境需求。本篇就要为大家介绍当前交换机的一些主流分类。

  一、从网络覆盖范围划分

  1。 广域网交换机

  广域网交换机主要是应用于电信城域网互联、互联网接入等领域的广域网中,提供通信用的基础平台,

  2、局域网交换机

  这种交换机就是我们常见的交换机了,也是我们学习的重点。局域网交换机应用于局域网络,用于连接终端设备,如服务器、工作站、集线器、路由器、网络打印机等网络设备,提供高速独立通信通道。

  其实在局域网交换机中又可以划分为多种不同类型的交换机。下面继续介绍局域网交换机的主要分类标准、 

  二、 根据传输介质和传输速度划分

  根据交换机使用的网络传输介质及传输速度的不同我们一般可以将局域网交换机分为以太网交换机、快速以太网交换机、千兆(G位)以太网交换机、10千兆(10G位)以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。

  1、以太网交换机

  首先要说明的一点是,这里所指的“以太网交换机”是指带宽在100Mbps以下的以太网所用交换机,其实下面我们还会要讲到一种“快速以太网交换机”、“千兆以太网交换机”和“10千兆以太网交换机”其实也是以太网交换机,只不过它们所采用的协议标准、或者传输介质不一样,当然其接口形式也可能不一样。

  以太网交换机是最普遍和便宜的,它的档次比较齐全,应用领域也非常广泛,在大大小小的局域网都可以见到它们的踪影。以太网包括三种网络接口:RJ-45、BNC和AUI,所用的传输介质分别为:双绞线、细同轴电缆和粗同轴电缆。不要以为一讲以太网就都是RJ-45接口的,只不过双绞线类型的RJ-45接口在网络设备中非常普遍而已。当然现在的交换机通常不可能全是BNC或AUI接口的,因为目前采用同轴电缆作为传输介质的网络现在已经很少见了,而一般是在RJ-45接口的基础上为了兼顾同轴电缆介质的网络连接,配上BNC或AUI接口。如图1所示的是一款带有RJ-45和AUI接口的以太网交换机产品示意图。


图1
 2、快速以太网交换机

  这种交换机是用于100Mbps快速以太网。快速以太网是一种在普通双绞线或者光纤上实现100Mbps传输带宽的网络技术。要注意的是,一讲到快速以太网就认为全都是纯正100Mps带宽的端口,事实上目前基本上还是10/100Mbps自适应型的为主。同样一般来说这种快速以太网交换机通常所采用的介质也是双绞线,有的快速以太网交换机为了兼顾与其它光传输介质的网络互联,或许会留有少数的光纤接口“SC”。图2所示的是一款快速以太网交换机产品示意图。


图2



  3、千兆以太网交换机

  千兆以太网交换机是用于目前较新的一种网络--千兆以太网中,也有人把这种网络称之为“吉位(GB)以太网”,那是因为它的带宽可以达到1000Mbps。它一般用于一个大型网络的骨干网段,所采用的传输介质有光纤、双绞线两种,对应的接口为“SC”和“RJ-45”接口两种。图3所示的就是两款千兆以太网交换机产品示意图。


图3

  4、10千兆以太网交换机

  10千兆以太网交换机主要是为了适应当今10千兆以太网络的接入,它一般是用于骨干网段上,采用的传输介质为光纤,其接口方式也就相应为光纤接口。同样这种交换机也称之为“10G以太网交换机”,道理同上。因为目前10G以太网技术还处于研发初级阶段,价格也非常昂贵(一般要2-9万美元),所以10G以太网在各用户的实际应用还不是很普遍,再则多数企业用户都早已采用了技术相对成熟的千兆以太网,且认为这种速度已能满足企业数据交换需求。图4所示的是一款10千兆以太网交换机产品示意图,从图中可以看出,它全采用光纤接口。


图4

  5、ATM交换机

  ATM交换机是用于ATM网络的交换机产品。ATM网络由于其独特的技术特性,现在还只广泛用于电信、邮政网的主干网段,因此其交换机产品在市场上很少看到。如我们在下面将要讲的ADSL宽带接入方式中如果采用PPPoA协议的话,在局端(NSP端)就需要配置ATM交换机,有线电视的Cable Modem互联网接入法在局端也采用ATM交换机。它的传输介质一般采用光纤,接口类型同样一般有两种:以太网RJ-45接口和光纤接口,这两种接口适合与不同类型的网络互联。图5就是这样一款ATM交换机产品示意图。它相对于物美价廉的以太网交换机而言,ATM交换机的价格实是很高的,所以也就在普通局域网中见不到它的踪迹。


图5
 6。 FDDI交换机

  FDDI技术是在快速成以太网技术还没有开发出来之前开发的,它主要是为了解决当时10Mbps以太网和16Mbps令牌网速度的局限,因为它的传输速度可达到100Mbps,这比当时的前两个速度高出许多,所以在当时还是有一定市场。但它当时是采用光纤作为传输介质的,比以双交线为传输介质的网络成本高许多,所以随着快速以太网技术的成功开发,FDDI技术也就失去了它应有的市场。正因如此,FDDI设备,如FDDI交换机也就比较少见了,FDDI交换机是用于老式中、小型企业的快速数据交换网络中的,它的接口形式都为光纤接口,图6所示的是一款3COM公司的FDDI交换机产品示意图。


图6

  三、根据应用层次划分

  根据交换机所应用的网络层次,我们又可以将网络交换机划分为可分为企业级交换机、校园网交换机、部门级交换机和工作组交换机、桌机型交换机五种。

  1、企业级交换机

  企业级交换机属于一类高端交换机,一般采用模块化的结构,可作为企业网络骨干构建高速局域网,所以它通常用于企业网络的最顶层。

  企业级交换机可以提供用户化定制、优先级队列服务和网络安全控制,并能很快适应数据增长和改变的需要,从而满足用户的需求。对于有更多需求的网络,企业级交换机不仅能传送海量数据和控制信息,更具有硬件冗余和软件可伸缩性特点,保证网络的可靠运行。这种交换机从它所处的位置可以清楚地看出它自身的要求非同一般,起码在带宽、传输速率以背板容量上要比一般交换机要高出许多,所以企业级交换机一般都是千兆以上以太网交换机。企业级交换机所采用的端口一般都为光纤接口,这主要是为了保证交换机高的传输速率。那么什么样的交换机可以称之为企业级交换机呢?说实在的还没有一个明确的标准,只是现在通常这么认为,如果是作为企业的骨干交换机时,能支持500个信息点以上大型企业应用的交换机为企业级交换机,如图7所示的是友讯的一款模块化千兆以太网交换机,它属于企业级交换机范畴。


图7

  企业交换机还可以接入一个大底盘。这个底盘产品通常支持许多不同类型的组件,比如快速以太网和以大网中继器、FDDI集中器、令牌环MAU和路由器。企业交换机在建设企业级别的网络时非常有用,尤其是对需要支持一些网络技术和以前的系统。基于底盘设备通常有非常强大的管理特征,因此非常适合于企业网络的环境。不过,基于底盘设备的成本都非常高,很少中、小型企业能承担得起。

  2。 校园网交换机

  校园网交换机,这种交换机应用相对较少,主要应用于较大型网络,且一般作为网络的骨干交换机。这种交换机具有快速数据交换能力和全双工能力,可提供容错等智能特性,还支持扩充选项及第三层交换中的虚拟局域网(VLAN)等多种功能。

  这种交换机通常用于分散的校园网而得名,其实它不一定要应用校园网络中,只表示它主要应用于物理距离分散的较大型网络中。因为校园网比较分散,传输距离比较长,所以在骨干网段上,这类交换机通常采用光纤或者同轴电缆作为传输介质,交换机当然也就需提供SC光纤口和BNC或者AUI同轴电缆接口。


  3、部门级交换机

  部门级交换机是面向部门级网络使用的交换机,它较前面两种所能随的网络规模要小许多。这类交换机可以是固定配置,也可以是模块配置,一般除了常用的RJ-45双绞线接口外,还带有光纤接口。部门级交换机一般具有较为突出的智能型特点,支持基于端口的VLAN(虚拟局域网),可实现端口管理,可任意采用全双工或半双工传输模式,可对流量进行控制,有网络管理的功能,可通过PC机的串口或经过网络对交换机进行配置、监控和测试。如果作为骨干交换机,则一般认为支持300个信息点以下中型企业的交换机为部门级交换机,如图8所示是一款部门级交换机产品示意图。


图8

  4。 工作组交换机

  工作组交换机是传统集线器的理想替代产品,一般为固定配置,配有一定数目的10Base-T或100Base-TX以太网口。交换机按每一个包中的MAC地址相对简单地决策信息转发,这种转发决策一般不考虑包中隐藏的更深的其他信息。与集线器不同的是交换机转发延迟很小,操作接近单个局域网性能,远远超过了普通桥接互联网络之间的转发性能。

  工作组交换机一般没有网络管理的功能,如果是作为骨干交换机则一般认为支持100个信息点以内的交换机为工作组级交换机。如图9所示的是一款快速以太网工作组交换机产品示意图。


图9

  5、桌面型交换机

  桌面型交换机,这是最常见的一种最低档交换机,它区别于其他交换机的一个特点是支持的每端口MAC地址很少,通常端口数也较少(12口以内,但不是绝对),只具备最基本的交换机特性,当然价格也是最便宜的。

  这类交换机虽然在整个交换机中属最低档的,但是相比集线器来说它还是具有交换机的通用优越性,况且有许多应用环境也只需这些基本的性能,所以它的应用还是相当广泛的。它主要应用于小型企业或中型以上企业办公桌面。在传输速度上,目前桌面型交换机大都提供多个具有10/100Mbps自适应能力的端口。图10是两款不同品牌型号的桌面型交换机产品示意图。


图10
 四、根据交换机的结构划分

  如果按交换机的端口结构来分,交换机大致可分为:固定端口交换机和模块化交换机两种不同的结构。其实还有一种是两者兼顾,那就是在提供基本固定端口的基础之上再配备一定的扩展插槽或模块。

  1。 固定端口交换机

  固定端口顾名思义就是它所带有的端口是固定的,如果是8端口的,就只能有8个端口,再不能添加。16个端口也就只能有16个端口,不能再扩展。目前这种固定端口的交换机比较常见,端口数量没有明确的规定,一般的端口标准是8端口、16端口和24端口。但现在也是各生产厂家也是各自说了算,他们认为多少个端口有市场就生产多少个端口的。目前交换机的端口比较杂,非标准的端口数主要有:4端口,5端口、10端口、12端口、20端口、22端口和32端口等。

  固定端口交换机虽然相对来说价格便宜一些,但由于它只能提供有限的端口和固定类型的接口,因此,无论从可连接的用户数量上,还是所从可使用的传输介质上来讲都具有一定的局限性,但这种交换机在工作组中应用较多,一般适用于小型网络、桌面交换环境。如图11、图12分别是一款16端口和24端口的交换机产品示意图。


图11




图12 


 固定端口交换机因其安装架构又分为桌面式交换机和机架式交换机。与集线器相同,机架式交换机更易于管理,更适用于较大规模的网络,它的结构尽寸要符合19英寸国际标准,它是用来与其它交换设备或者是路由器、服务器等集中安装在一个机柜中。而桌面式交换机,由于只能提供少量端口且不能安装于机柜内,所以,通常只用于小型网络。如图13和图14所示的分别为一款桌面式固定端口交换机和机架式固定端口交换机。

 


图13




图14

  2、模块化交换机

  模块化交换机虽然在价格上要贵很多,但拥有更大的灵活性和可扩充性,用户可任意选择不同数量、不同速率和不同接口类型的模块,以适应千变万化的网络需求。而且,机箱式交换机大都有很强的容错能力,支持交换模块的冗余备份,并且往往拥有可热插拔的双电源,以保证交换机的电力供应。在选择交换机时,应按照需要和经费综合考虑选择机箱式或固定方式。一般来说,企业级交换机应考虑其扩充性、兼容性和排错性,因此,应当选用机箱式交换机;而骨干交换机和工作组交换机则由于任务较为单一,故可采用简单明了的固定式交换机。如图15为一款模块化快速以太网交换机产品示意图,在其中就具有4个可拨插模块,可根据实际需要灵活配置。


图15
 五、根据交换机工作的协议层划分

  我们知道网络设备都是对应工作在OSI/RM这一开放模型的一定层次上,工作的层次越高,说明其设备的技术性越高,性能也越好,档次也就越高。交换机也一样,随着交换技术的发展,交换机由原来工作在OSI/RM的第二层,发展到现在有可以工作在第四的交换机出现,所以根据工作的协议层交换机可分第二层交换机、第三层交换机和第四层交换机。

  1、第二层交换机

  第二层交换机是对应于OSI/RM的第二协议层来定义的,因为它只能工作在OSI/RM开放体系模型的第二层--数据链路层。第二层交换机依赖于链路层中的信息(如MAC地址)完成不同端口数据间的线速交换,主要功能包括物理编址、错误校验、帧序列以及数据流控制。这是最原始的交换技术产品,目前桌面型交换机一般是属于这类型,因为桌面型的交换机一般来说所承担的工作复杂性不是很强,又处于网络的最基层,所以也就只需要提供最基本的数据链接功能即可。目前第二层交换机应用最为普遍(主要是价格便宜,功能符合中、小企业实际应用需求),一般应用于小型企业或中型以上企业网络的桌面层次。如下图16所示的是一款第二层交换机的产品示意图。要说明的是,所有的交换机在协议层次上来说都是向下兼容的,也就是说所有的交换机都能够工作在第二层。


图16



  2、第三层交换机

  第三层同样是对应于OSI/RM开放体系模型的第三层--网络层来定义的,也就是说这类交换机可以工作在网络层,它比第二层交换机更加高档,功能更加强。第三层交换机因为工作于OSI/RM模型的网络层,所以它具有路由功能,它是将IP地址信息提供给网络路径选择,并实现不同网段间数据的线速交换。当网络规模较大时,可以根据特殊应用需求划分为小面独立的VLAN网段,以减小广播所造成的影响时。通常这类交换机是采用模块化结构,以适应灵活配置的需要。在大中型网络中,第三层交换机已经成为基本配置设备。图17所示的是3COM公司是一款第三层交换机产品示意图。


图17

 3、第四层交换机

  第四层交换机是采用第四层交换技术而开发出来的交换机产品,当然它工作于OSI/RM模型的第四层,即传输层,直接面对具体应用。第四层交换机支持的协议是各种各样的,如HTTP,FTP、Telnet、SSL等。在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCPSYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。如图18所示的是一款第四层交换机产品示意图,从图中可以看出它也是采用模块结构的。


图18



  第四层交换技术相对原来的第二层、第三层交换技术具有明显的优点,从操作方面来看,第四层交换是稳固的,因为它将包控制在从源端到宿端的区间中。另一方面,路由器或第三层交换,只针对单一的包进行处理,不清楚上一个包从哪来、也不知道下一个包的情况。它们只是检测包报头中的TCP端口数字,根据应用建立优先级队列,路由器根据链路和网络可用的节点决定包的路由;而第四层交换机则是在可用的服务器和性能基础上先确定区间。目前由于这种交换技术尚未真正成熟且价格昂贵,所以,第四层交换机在实际应用中目前还较少见。
六、根据是否支持网管功能分

  如果按交换机是否支持网络管理功能,我们可以将交换机又可大分为“网管型”和“非网管理型”两大类。

  网管型交换机的任务就是使所有的网络资源处于良好的状态。网管型交换机产品提供了基于终端控制口(Console)、基于Web页面以及支持Telnet远程登录网络等多种网络管理方式。因此网络管理人员可以对该交换机的工作状态、网络运行状况进行本地或远程的实时监控,纵观全局地管理所有交换端口的工作状态和工作模式。网管型交换机支持SNMP协议,SNMP协议由一整套简单的网络通信规范组成,可以完成所有基本的网络管理任务,对网络资源的需求量少,具备一些安全机制,。NMP协议的工作机制非常简单,主要通过各种不同类型的消息,即PDU(协议数据单位)实现网络信息的交换。但是网管型交换机相对下面所介绍的非网管型交换机来说要贵许多。

  网管型交换机采用嵌入式远程监视(RMON)标准用于跟踪流量和会话,对决定网络中的瓶颈和阻塞点是很有效的。软件代理支持4个RMON组(历史、统计数字、警报和事件),从而增强了流量管理、监视和分析。统计数字是一般网络流量统计;历史是一定时间间隔内网络流量统计;警报可以在预设的网络参数极限值被超过时进行报警;时间代表管理事件。

  还有网管型交换机提供基于策略的QoS(Quality of service)。策略是指控制交换机行为的规则,网络管理员利用策略为应用流分配带宽、优先级以及控制网络访问,其重点是满足服务水平协议所需的带宽管理策略及向交换机发布策略的方式。在交换机的每个端口处用来表示端口状态、半双工/全双工和10BaseT/100BaseT的多功能发光二极管(LED)以及表示系统、冗余电源(RPS)和带宽利用率的交换级状态LED形成了全面、方便的可视管理系统。目前大多数部门级以下的交换机多数都是非网管型的,只有企业级及少数部门级的交换机支持网管功能,图19所示的是两款网管型交换机产品示意图。


图19

  以上对交换机的几种主流分类方法逐个进行了介绍,相信各位对交换机的主要类型有一个基本全面的了解。下一篇要介绍交换机的主要交换技术及选购注意事项。